非自回归机器翻译[1]由于其解码过程不依赖于之前翻译结果从而获得很高的推理速度,但是其翻译质量相对较差。近期许多工作将迭代式[2,3]的解码策略引入非自回归机器翻译中,其通过多次优化先前的翻译结果从而提升最终翻译质量。但是,其中一个显著问题是在迭代式解码过程中这些方法并不能显示区分翻译结果中的错误。在本工作中,我们提出一个新的非自回归机器翻译架构RewriteNAT,其可以学习改写翻译结果的错误内容。该架构使用一个定位模块识别翻译中的错误,而后使用另一个改写模块将其改写成正确翻译内容。此外,为了保证训练和迭代式解码过程中输入数据分布的一致性,我们采用迭代式的训练方法进一步提升模型的改写错误能力。在多个广泛使用的翻译数据上的实验结果显示,相比多个传统的迭代式非自回归方法,我们提出方法可以获得更好的翻译性能,同时显著的减少解码时间。

成为VIP会员查看完整内容
15

相关内容

机器翻译,又称为自动翻译,是利用计算机将一种自然语言(源语言)转换为另一种自然语言(目标语言)的过程。它是计算语言学的一个分支,是人工智能的终极目标之一,具有重要的科学研究价值。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【ICLR2022】序列生成的目标侧数据增强
专知会员服务
23+阅读 · 2022年2月14日
专知会员服务
19+阅读 · 2021年9月13日
【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
22+阅读 · 2021年4月11日
专知会员服务
27+阅读 · 2020年11月5日
【NeurIPS2020-FB】学习具有可解码信息瓶颈的最优表示
专知会员服务
23+阅读 · 2020年10月13日
赛尔原创@EMNLP 2021 | 多语言和跨语言对话推荐
哈工大SCIR
0+阅读 · 2022年3月11日
基于编辑方法的文本生成(上)
哈工大SCIR
0+阅读 · 2021年6月30日
进一步改进GPT和BERT:使用Transformer的语言模型
机器之心
16+阅读 · 2019年5月1日
现代情感分析方法
算法与数学之美
14+阅读 · 2018年1月12日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2010年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
17+阅读 · 2021年3月29日
Arxiv
27+阅读 · 2017年12月6日
Arxiv
23+阅读 · 2017年3月9日
VIP会员
相关VIP内容
【ICLR2022】序列生成的目标侧数据增强
专知会员服务
23+阅读 · 2022年2月14日
专知会员服务
19+阅读 · 2021年9月13日
【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
22+阅读 · 2021年4月11日
专知会员服务
27+阅读 · 2020年11月5日
【NeurIPS2020-FB】学习具有可解码信息瓶颈的最优表示
专知会员服务
23+阅读 · 2020年10月13日
相关资讯
赛尔原创@EMNLP 2021 | 多语言和跨语言对话推荐
哈工大SCIR
0+阅读 · 2022年3月11日
基于编辑方法的文本生成(上)
哈工大SCIR
0+阅读 · 2021年6月30日
进一步改进GPT和BERT:使用Transformer的语言模型
机器之心
16+阅读 · 2019年5月1日
现代情感分析方法
算法与数学之美
14+阅读 · 2018年1月12日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2010年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员