论文标题:
Certified Patch Robustness via Smoothed Vision Transformers
https://arxiv.org/pdf/2110.07719.pdf
https://github.com/MadryLab/smoothed-vit
1.1 Patch Robustness
被平滑分类器分类成功的准确率被称为标准准确度。
如果达到了这个阈值,那么最频繁的类将被保证不会改变,即使对抗补丁破坏了它所相交的每一个 ablation。平滑分类器依然做出的既正确又可靠的预测。
虽然 certifiably robust 像许多其他认证防御一样可以提供对抗攻击的保证,但它们面临几个限制其实用性的主要挑战:
1. 只对相对较小的对抗补丁适用。
2. 存在 tradeoff,鲁棒性的增强以准确性的降低为代价。一个标准的 ResNet-50 在 ImageNet 基准上可以达到 76% 的准确率,并且在一个典型的 GPU 上花费不到 1 秒的时间进行预测。相反,表现最好的认证防御模型,如标准准确率为 44%,在类似的硬件上进行预测需要 150 秒。
3. 推理时间往往比标准的、非健壮的模型大几个数量级,这使得经过认证的防御很难在实时设置中部署。
1.3 Vision transformers
ViT 区别于传统 CNN 网络主要在 2 个方面:
1. Tokenization:ViT 使用 patch 的方式对图像特征进行组织,将整个图像分成 个 patch,每个 patch 被转化为 embedding + 一个位置编码。
2. Self-Attention:大名鼎鼎的 multi-headed self-attention layers。
ViT 之所以适合本任务主要有两个原因:
1. ViT 将图像作为 token 集合处理。因此,ViT 具有简单地从输入中删除不必要的 token 并忽略图像的更大区域的自然能力,这可以大大加快 ablations 的处理速度。
2. CNN 要得到全局的感受野需要一层层的传播到后面的层才能拿到全局信息,但是 self-attention 在每一层都共享全局信息。因此 ViT 更有希望去处理小的,没有被 mask 的区域。
本文首先显示了 ViT 可以大幅度提升鲁棒性,同时分类准确度不会减少。然后本文对 ViT 的结构进行了一定的改进,大幅度提高了 smoothing procedure 的预测速度。改进也很 intuitive,就是将 ablation 中完全 mask 的 token 全部删掉,留下的 token 就不会很多,预测速度大幅提升。
这一部分主要分为三步:
1. 将整个图像编码为一组 token 和相应的位置编码。
2. 丢弃完全被 mask 的 token。
3. 将剩余的 token 作为输入。
特别鸣谢
感谢 TCCI 天桥脑科学研究院对于 PaperWeekly 的支持。TCCI 关注大脑探知、大脑功能和大脑健康。
更多阅读
#投 稿 通 道#
让你的文字被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析、科研心得或竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。
📝 稿件基本要求:
• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注
• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题
• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算
📬 投稿通道:
• 投稿邮箱:hr@paperweekly.site
• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者
• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿
△长按添加PaperWeekly小编
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧