项目名称: 多参数关联传感的高分辨力位移测量新方法研究

项目编号: No.51505052

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 机械、仪表工业

项目作者: 鲁进

作者单位: 重庆理工大学

项目金额: 21万元

中文摘要: 针对现有栅式位移传感器分辨力受限于空间分布的问题,提出一种多参数关联传感的高分辨力位移测量新方法。该方法以时栅传感技术为基础,在时栅位移测量的机理研究中,通过引入三角变换建立高阶时栅波动方程,得到实现高分辨力位移测量的数学模型;将被测位移变化同时反映到平行分布在与测量面垂直的第三维空间内的多个关联电磁参数(如线圈匝数、电流强度、有效磁通面积、磁路长度等)上,再通过上述具有特定空间分布的关联参数协同约束传感过程,得到实现高分辨力位移测量的物理模型;拟研制高分辨力时栅传感器样机,实现在原有测量面二维空间栅距密度不变的条件下位移测量分辨力的大幅提升,同时提高输出信号的质量。创新之处在于:方法不通过减小空间栅距,而是通过引导现有位移测量中已经存在却尽力控制使其保持不变的多个参数同时参与传感过程,达到提升分辨力的目的,易于实现,是一种在信号产生源头提高分辨力的位移测量新方法,也适用于其它同类传感器。

中文关键词: 高分辨测量;精密测量;位移;时栅;传感器

英文摘要: A new sensing method for high resolution displacement measurement based on coaction of associated multiple parameters is proposed, in order to resolve the limitation in grating fabrication of current displacement sensors. The method is developed with the basis of time grating sensing technologies. A mathematical model of high resolution displacement measurement is firstly built by making higher-order wave equations of time grating with the introduction of trigonometric transforms. The displacement will have relations at the same time with multiple associated electromagnetic parameters (e.g., coil turns, current intensity, flux area and magnetic path length) which are in the 3rd space vertical to the plane of the displacement to be measured, so the physical model of this method is constructed by the coaction of all parameters abovementioned. At last, a prototype of time grating sensor using this method will be developed to perform higher resolution measurement and output better quality of sensor signals than before with the same grating pitch size. The highlight of this method is that it’s a new and easy way to improve resolution from the signal source by full use of the parameters which are designed to be constant in the sensor rather than reducing grating pitch size, and it’s also suitable for other grating sensors.

英文关键词: high resolution measurement;precision measurement;displacement;time grating;sensor

成为VIP会员查看完整内容
0

相关内容

邬贺铨院士关于6G的十点思考
专知会员服务
33+阅读 · 2022年3月24日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
23+阅读 · 2021年12月6日
数据中心传感器技术应用 白皮书
专知会员服务
42+阅读 · 2021年11月13日
专知会员服务
20+阅读 · 2021年10月3日
专知会员服务
21+阅读 · 2021年6月18日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
25+阅读 · 2021年5月23日
专知会员服务
46+阅读 · 2020年11月13日
专知会员服务
109+阅读 · 2020年10月27日
【NeurIPS'21】从典型相关分析到自监督图表示学习
可折叠iPhone翻盖手机概念设计 自带辅助屏幕
威锋网
0+阅读 · 2022年2月10日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
干货|全景视频拼接的关键技术分析
全球人工智能
13+阅读 · 2017年7月15日
[有意思的数学] 参数估计
机器学习和数学
15+阅读 · 2017年6月4日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2021年6月29日
Arxiv
26+阅读 · 2018年8月19日
Arxiv
10+阅读 · 2017年12月29日
小贴士
相关VIP内容
邬贺铨院士关于6G的十点思考
专知会员服务
33+阅读 · 2022年3月24日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
23+阅读 · 2021年12月6日
数据中心传感器技术应用 白皮书
专知会员服务
42+阅读 · 2021年11月13日
专知会员服务
20+阅读 · 2021年10月3日
专知会员服务
21+阅读 · 2021年6月18日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
25+阅读 · 2021年5月23日
专知会员服务
46+阅读 · 2020年11月13日
专知会员服务
109+阅读 · 2020年10月27日
相关资讯
【NeurIPS'21】从典型相关分析到自监督图表示学习
可折叠iPhone翻盖手机概念设计 自带辅助屏幕
威锋网
0+阅读 · 2022年2月10日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
干货|全景视频拼接的关键技术分析
全球人工智能
13+阅读 · 2017年7月15日
[有意思的数学] 参数估计
机器学习和数学
15+阅读 · 2017年6月4日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员