太秀了!单片机内置 ADC 实现高分辨率采样?

2020 年 10 月 13 日 CSDN

作者 | 逸珺
来源 |  嵌入式客栈(ID :embInn
头图 |  CSDN 下载自东方IC
[导读] 相信ADC的应用或多或少都会用到,在很多场合都有分辨率要求,要实现较高分辨率时,第一时间会想到采用一个较高位数的外置ADC去实现。可是高分辨率外置ADC往往价格都不便宜,这就带来一对矛盾:高指标与低成本。其实利用单片机片上的ADC利用过采样技术就能很好的解决这样一对矛盾体,本文来聊聊这个话题。


什么是过采样?

在信号处理中,过采样是指以明显高于奈奎斯特速率的采样频率对信号进行采样。从理论上讲,如果以奈奎斯特速率或更高的速率进行采样,则可以完美地重建带宽受限的信号。奈奎斯特频率定义为信号带宽的两倍。过采样能够提高分辨率和信噪比SNR,并且通过放宽抗混叠滤波器的性能要求,有助于避免混叠和相位失真。
在很多项目应用中,需要测量信号的动态范围较大,且需要参数的微小变化。例如,ADC需要测量很大的温度范围(比如工业中甚至要求从-200℃~500℃),但仍要求系统对小于1度的变化做出响应。常见的单片机片上ADC位数为12位,如要实现高于12位分辨率要怎么做呢?我们知道奈奎斯特-香农采样定理可知:

其中:

  • 为输入待采样信号最高频率
  • 为奈奎斯特频率。

如果实际采样频率高于奈奎斯特频率 ,即为过采样。那么低于奈奎斯特采样频率进行采样就称为欠采样,如下图:

或许你会问,常规的应用都是过采样,怎么也没见分辨率提高了呀?如果仅仅过采样,要实现更高分辨率显然是不够的,那么要怎么利用过采样实现更高的分辨率呢?要知道所采用的ADC硬件核分辨率是固定的,难道还会变不成?


过采样提高分辨率


如果对一模拟信号,采用过采样,然后再进行一定的软件后处理,理论上是可以得到更高分辨率的:

为增加有效位数(ENOB :effective number of bits),对信号进行过采样,所需的过采样率可以由下面公式确定(省略理论推导,过于枯燥):

其中:

  • 为过采样频率
  • 产品所需实际采样频率
  • W为额外所需增加的分辨率位数

假设系统使用12位ADC每100 ms输出一次采样值也即(10 Hz)。为了将测量的分辨率提高到16位,我们按上述公式计算过采样频率:

因此,如果我们以 f对信号进行过采样,然后在所需的采样周期内收集足够的样本以对它们进行平均,现在可以将16位输出数据用于16位测量。

具体怎么做呢?

  • 首先将256个连续采样累加
  • 然后将总数除以16(或将总数右移4位)。该过程通常称为抽取,也即将速率采样。
  • 在类似进行下一次16位样本处理

注意:用于累积过采样数据并执行除法抽取数据类型必须具有足够的字节宽度,以防止溢出和截断错误。比如这里累积和可以采样32位无符号整型。

由上面公式可得出一个重要结论:每提高W位分辨率,需要提高采样率 倍。


过采样提高ADC的信噪比


ADC测量的SNR理论极限基于量化噪声,这是基于在没有过采样和平滑滤波情况下模数转换过程中固有的量化误差所致。而量化误差取决于ADC分辨率的位数,其中N为ADC的位数, 为参考电压。

SNR理论情况下极限值的计算方式是数据转换的有效位数,如下所示:

这个公式没必要去记,用到的时候参考计算一下即可。从公式中可看出,要提升一个模数转换器的理论SNR的一种可行方案可以通过提升采样位数,但是需要注意的是这里的信噪比是度量模数转换器本身的,就一个真实系统的信噪比还与整个信号链相关!

从上式中不难算出,12位ADC的理论SNR极限值为74dB,而通过过采样提升4位分辨率后,其SNR理论极限提高至96 dB!


到底怎么实现呢?


这里以伪代码的方式给出编程思路:

void init_adc(void){    /*配置ADC的采样率为过采样率连续中断模式*/}
void start_adc(void){ /*控制ADC启动采样*/}
/*不同的开发平台中断函数写法略有差异,比如51需要指定向量 *//*OVERSAMPLE_FACTOR=4^RSHIFT_BITS 下面两个宏一起修改 */#define RSHIFT_BITS (4)#define OVERSAMPLE_FACTOR (256)static unsigned short adc_result=0U;void adc_isr(void){ static unsigned short adc_index = OVERSAMPLE_FACTOR; static unsigned int accumulator = 0U; /*ADC_REG ADC转换结果寄存器,不同平台名称不同*/ accumulator += ADC_REG; adc_index--; if( adc_index==0 ) { /* 加和按因子抽取 */ adc_result = accumulator>>RSHIFT_BITS; accumulator = 0; adc_index = OVERSAMPLE_FACTOR; }}

该方案有一个缺陷,就是每次ADC中断都需要CPU参与,在过采样率很高的情况下,上述方案消耗很多CPU资源,那么如果单片机内存资源足够的情况下可以考虑采用DMA模式,采集很多数据并将数据暂存下来,然后再做累加平均抽取。这是空间换时间的策略的体现。这个编代码也很容易,只需要申请一片内存区,内存区的大小可以定为256的倍数,这是因为在提升4位分辨率情况下,一个16位的输出样本需要256个12位样本。


总结一下


在成本受限的情况下,可以通过单片机片内ADC过采样以及累积抽取的技术来提升采样分辨率,这种技术的特点:

  • 可以使用过采样和平均来提高测量分辨率,而无需增加昂贵的片外ADC。

  • 过采样和加和抽取将以提高CPU利用率和降低吞吐量为代价来提高SNR和测量分辨率。

  • 过采样和加和抽取可以改善白噪声的信噪比。

更多精彩推荐

300亿美元,AMD为什么要买Xilinx?

我们的边缘计算技术点,可能超前了业界一点”
1024程序员节开源技术英雄会,参会“英雄榜”发榜

5行Python代码实现刷爆全网的动态条形图!

如何应对云原生之旅中的安全挑战?

区块链+生鲜:杜绝“偷梁换柱”和“以次充好”
   
   
     
点分享
点点赞
点在看
登录查看更多
0

相关内容

专知会员服务
28+阅读 · 2020年10月24日
专知会员服务
74+阅读 · 2020年8月25日
【KDD2020】最小方差采样用于图神经网络的快速训练
专知会员服务
27+阅读 · 2020年7月13日
【CVPR2020】L2 ^GCN:图卷积网络的分层学习高效训练
专知会员服务
37+阅读 · 2020年3月31日
自回归模型:PixelCNN
专知会员服务
26+阅读 · 2020年3月21日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
深度神经网络模型压缩与加速综述
专知会员服务
128+阅读 · 2019年10月12日
基于深度学习的超分辨率图像技术一览
极市平台
17+阅读 · 2019年8月24日
从零开始一起学习SLAM | 给点云加个滤网
计算机视觉life
6+阅读 · 2018年12月18日
Meta-Learning 元学习:学会快速学习
专知
24+阅读 · 2018年12月8日
一文了解采样方法
AI100
5+阅读 · 2018年7月6日
如何处理多种退化类型的卷积超分辨率
算法与数学之美
6+阅读 · 2018年6月1日
深度学习之图像超分辨重建技术
机器学习研究会
12+阅读 · 2018年3月24日
CNN之卷积层
机器学习算法与Python学习
8+阅读 · 2017年7月2日
Arxiv
0+阅读 · 2020年12月3日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关VIP内容
专知会员服务
28+阅读 · 2020年10月24日
专知会员服务
74+阅读 · 2020年8月25日
【KDD2020】最小方差采样用于图神经网络的快速训练
专知会员服务
27+阅读 · 2020年7月13日
【CVPR2020】L2 ^GCN:图卷积网络的分层学习高效训练
专知会员服务
37+阅读 · 2020年3月31日
自回归模型:PixelCNN
专知会员服务
26+阅读 · 2020年3月21日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
深度神经网络模型压缩与加速综述
专知会员服务
128+阅读 · 2019年10月12日
相关资讯
基于深度学习的超分辨率图像技术一览
极市平台
17+阅读 · 2019年8月24日
从零开始一起学习SLAM | 给点云加个滤网
计算机视觉life
6+阅读 · 2018年12月18日
Meta-Learning 元学习:学会快速学习
专知
24+阅读 · 2018年12月8日
一文了解采样方法
AI100
5+阅读 · 2018年7月6日
如何处理多种退化类型的卷积超分辨率
算法与数学之美
6+阅读 · 2018年6月1日
深度学习之图像超分辨重建技术
机器学习研究会
12+阅读 · 2018年3月24日
CNN之卷积层
机器学习算法与Python学习
8+阅读 · 2017年7月2日
相关论文
Top
微信扫码咨询专知VIP会员