IROS2019 |新开源SuMa++:语义激光雷达SLAM可靠过滤动态物体

2019 年 11 月 7 日 计算机视觉life

点击上方“计算机视觉life”,选择“星标”

快速获得最新干货

SLAM大牛Cyrill Stachniss组发表在IROS2019的新论文SuMa++: Efficient LiDAR-based Semantic SLAM,已经开源。

demo视频:

论文链接:

http://www.ipb.uni-bonn.de/wp-content/papercite-data/pdf/chen2019iros.pdf

开源代码:

https://github.com/PRBonn/semantic_suma

该论文背景及主要工作:

可靠并精确的定位和建图是大多数自动驾驶和机器人系统的关键组成部分。除了环境的几何信息之外,语义信息在智能导航方面也起着重要作用。在大多数现实环境中,由于存在动态物体,传统的基于环境几何信息的方法很难实现可靠并精确的定位与建图。这些传统几何方法方法常常因动态物体的存在出现定位偏移以及建图扭曲的情况。

在本文中,我们提出一种新的基于语义信息的激光雷达SLAM系统来更好地解决真实环境中的定位与建图问题。该系统通过语义分割激光雷达点云来获取点云级的密集语义信息,并将该语义信息集成到激光雷达SLAM中来提高激光雷达的定位与建图精度。通过基于深度学习的卷积神经网络,我们的方法可以十分高效地在激光雷达“范围图(range image)”上进行语义分割,并对整个激光雷达点云进行语义标记。通过结合几何深度信息,我们的方法可以进一步提升语义分割的精度。基于带语义标记的激光雷达点云,我们的方法能够构建带有语义信息且全局一致的密集“面元(surfel)”语义地图。基于该语义地图,我们提出的算法能够可靠地过滤移除动态物体,而且还可以通过语义约束来进一步提高投影匹配ICP的位姿估计精度。我们利用KITTI数据集中的公路(road)数据集和里程计数据集(odometry)来测试我们提出的语义SLAM系统。该数据集(尤其是KITTI公路数据集)中包含大量的行驶中的汽车。实验结果表明,在真实的动态环境中我们的语义SLAM方法具有更高的定位精度以及鲁棒性。我们的激光雷达语义SLAM系统已经开源。

交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、检测分割识别、三维视觉、医学影像、GAN、自动驾驶、计算摄影、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~

推荐阅读

前段时间参加了个线下交流会(附SLAM入门视频)

从零开始一起学习SLAM | 为什么要学SLAM?

从零开始一起学习SLAM | 学习SLAM到底需要学什么?

从零开始一起学习SLAM | SLAM有什么用?

从零开始一起学习SLAM | C++新特性要不要学?

从零开始一起学习SLAM | 为什么要用齐次坐标?

从零开始一起学习SLAM | 三维空间刚体的旋转

从零开始一起学习SLAM | 为啥需要李群与李代数?

从零开始一起学习SLAM | 相机成像模型

从零开始一起学习SLAM | 不推公式,如何真正理解对极约束?

从零开始一起学习SLAM | 神奇的单应矩阵

从零开始一起学习SLAM | 你好,点云

从零开始一起学习SLAM | 给点云加个滤网

从零开始一起学习SLAM | 点云平滑法线估计

从零开始一起学习SLAM | 点云到网格的进化

从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码

从零开始一起学习SLAM | 掌握g2o顶点编程套路

从零开始一起学习SLAM | 掌握g2o边的代码套路

从零开始一起学习SLAM | ICP原理及应用

从零开始一起学习SLAM | 用四元数插值来对齐IMU和图像帧

可视化理解四元数,愿你不再掉头发

视觉SLAM技术综述

研究SLAM,对编程的要求有多高?

现在开源的RGB-D SLAM有哪些?

详解 | SLAM回环检测问题

汇总 | SLAM、重建、语义相关数据集大全

吐血整理 | SLAM方向国内有哪些优秀的公司?

最强战队 | 三维视觉、SLAM方向全球顶尖实验室汇总

SLAM方向公众号、知乎、博客上有哪些大V可以关注?

汇总 | 最全 SLAM 开源数据集

综述 | SLAM回环检测方法

干货总结 | SLAM 面试常见问题及参考解答
2019 最新SLAM、定位、建图求职分享,看完感觉自己就是小菜鸡!
2019暑期计算机视觉实习应聘总结

2018年SLAM、三维视觉方向求职经验分享

经验分享 | SLAM、3D vision笔试面试问题


最新AI干货,我在看  

登录查看更多
2

相关内容

即时定位与地图构建(SLAM或Simultaneouslocalizationandmapping)是这样一种技术:使得机器人和自动驾驶汽车等设备能在未知环境(没有先验知识的前提下)建立地图,或者在已知环境(已给出该地图的先验知识)中能更新地图,并保证这些设备能在同时追踪它们的当前位置。
【开放书】SLAM 中的几何与学习方法,62页pdf
专知会员服务
109+阅读 · 2020年6月5日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
基于视觉的三维重建关键技术研究综述
专知会员服务
160+阅读 · 2020年5月1日
3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
专知会员服务
41+阅读 · 2020年2月20日
专知会员服务
86+阅读 · 2019年12月13日
【泡泡图灵智库】实时单目物体-模型感知稀疏SLAM(ICRA)
泡泡机器人SLAM
10+阅读 · 2019年7月12日
SLAM的动态地图和语义问题
计算机视觉life
24+阅读 · 2019年4月27日
高翔:谈谈语义SLAM/地图
计算机视觉life
35+阅读 · 2019年3月26日
【泡泡机器人】也来谈语义SLAM/语义地图
泡泡机器人SLAM
21+阅读 · 2019年3月12日
【泡泡一分钟】动态环境下的高效长时间建图
泡泡机器人SLAM
6+阅读 · 2019年2月1日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
【泡泡一分钟】动态环境下稳健的单目SLAM
泡泡机器人SLAM
13+阅读 · 2018年3月22日
Real-time Scalable Dense Surfel Mapping
Arxiv
5+阅读 · 2019年9月10日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
Structure Aware SLAM using Quadrics and Planes
Arxiv
4+阅读 · 2018年8月13日
Arxiv
8+阅读 · 2018年1月25日
VIP会员
相关VIP内容
【开放书】SLAM 中的几何与学习方法,62页pdf
专知会员服务
109+阅读 · 2020年6月5日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
基于视觉的三维重建关键技术研究综述
专知会员服务
160+阅读 · 2020年5月1日
3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
专知会员服务
41+阅读 · 2020年2月20日
专知会员服务
86+阅读 · 2019年12月13日
相关资讯
【泡泡图灵智库】实时单目物体-模型感知稀疏SLAM(ICRA)
泡泡机器人SLAM
10+阅读 · 2019年7月12日
SLAM的动态地图和语义问题
计算机视觉life
24+阅读 · 2019年4月27日
高翔:谈谈语义SLAM/地图
计算机视觉life
35+阅读 · 2019年3月26日
【泡泡机器人】也来谈语义SLAM/语义地图
泡泡机器人SLAM
21+阅读 · 2019年3月12日
【泡泡一分钟】动态环境下的高效长时间建图
泡泡机器人SLAM
6+阅读 · 2019年2月1日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
【泡泡一分钟】动态环境下稳健的单目SLAM
泡泡机器人SLAM
13+阅读 · 2018年3月22日
相关论文
Real-time Scalable Dense Surfel Mapping
Arxiv
5+阅读 · 2019年9月10日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
Structure Aware SLAM using Quadrics and Planes
Arxiv
4+阅读 · 2018年8月13日
Arxiv
8+阅读 · 2018年1月25日
Top
微信扫码咨询专知VIP会员