目前,弱监督视频行为定位方法主要遵循于通过优化视频级分类目标来实现定位的方式。这些方法大多忽略了视频之间丰富的时序对比关系,因此在分类学习和分类-定位自适应的过程中面临着极大的模糊性。本文认为通过考虑上下文的序列到序列对比可以为弱监督时序行为定位提供本质的归纳偏置并帮助识别连续的行为片段。因此,如图1所示,本文在一个可导的动态规划框架下,设计了包括细粒度序列距离对比和最长公共子序列对比在内的两个互补的对比目标函数。在多个主流的基准数据集上的实验结果表明本文方法取得了显著的效果。