Sensitivity of deep-neural models to input noise is known to be a challenging problem. In NLP, model performance often deteriorates with naturally occurring noise, such as spelling errors. To mitigate this issue, models may leverage artificially noised data. However, the amount and type of generated noise has so far been determined arbitrarily. We therefore propose to model the errors statistically from grammatical-error-correction corpora. We present a thorough evaluation of several state-of-the-art NLP systems' robustness in multiple languages, with tasks including morpho-syntactic analysis, named entity recognition, neural machine translation, a subset of the GLUE benchmark and reading comprehension. We also compare two approaches to address the performance drop: a) training the NLP models with noised data generated by our framework; and b) reducing the input noise with external system for natural language correction. The code is released at https://github.com/ufal/kazitext.
翻译:深神经模型对输入噪音的感知度被认为是一个具有挑战性的问题。 在国家语言方案中,模型性能往往会随着自然产生的噪音而恶化,例如拼写错误。为了缓解这一问题,模型可能会利用人工破译的数据。然而,迄今产生的噪音的数量和类型已经任意确定。因此,我们提议从语法-error-校正组合体中进行统计性模型错误。我们用多种语言对一些最先进的NLP系统是否稳健进行彻底评估,任务包括模光速合成分析、名称实体识别、神经机器翻译、GLUE基准的一个子和阅读理解。我们还比较了两种方法来解决性能下降问题:a)用我们框架产生的无记名数据对NLP模型进行培训;b)用外部系统减少自然语言校正的输入噪音。该代码在https://github.com/ufal/kazitext上发布。