人脸检测是许多人脸识别和人脸分析系统的关键第一步。早期的人脸检测方法主要是基于从局部图像区域手工提取特征的基础上构建分类器,如Haar级联和梯度定向直方图。然而,这些方法还不够强大,无法对来自不受控制环境的图像实现高精度。
随着2012年深度神经网络在图像分类方面的突破性工作,人脸检测的范式发生了巨大的转变。受计算机视觉中深度学习的快速发展的启发,在过去的几年里,许多基于深度学习的框架被提出用于人脸检测,在准确性方面取得了显著的提高。
在这项工作中,我们提供了一些最具代表性的基于深度学习的人脸检测方法的详细概述,将它们分成几个主要类别,并展示了它们的核心架构设计和流行基准上的精度。我们还描述了一些最流行的人脸检测数据集。最后,我们讨论了当前该领域存在的一些问题,并对未来的研究提出了建议。