自监督学习由于能够避免标注大规模数据集的成本而受到欢迎。它能够采用自定义的伪标签作为监督,并将学习到的表示用于几个下游任务。具体来说,对比学习最近已成为计算机视觉、自然语言处理(NLP)等领域的自主监督学习方法的主要组成部分。它的目的是将同一个样本的增广版本嵌入到一起,同时试图将不同样本中的嵌入推开。这篇论文提供了一个广泛的自我监督的方法综述,遵循对比的方法。本研究解释了在对比学习设置中常用的借口任务,以及到目前为止提出的不同架构。接下来,我们将对图像分类、目标检测和动作识别等多个下游任务的不同方法进行性能比较。最后,我们总结了目前方法的局限性和需要进一步的技术和未来方向取得实质性进展。

https://arxiv.org/abs/2011.00362

概述:

随着深度学习技术的发展,它已成为目前大多数智能系统的核心组件之一。深度神经网络(DNNs)能够从现有的大量数据中学习丰富的模式,这使得它在大多数计算机视觉(CV)任务(如图像分类、目标检测、图像分割、动作识别)以及自然语言处理(NLP)任务(如句子分类、语言模型、机器翻译等)中成为一种引人注目的方法。然而,由于手工标注数百万个数据样本的工作量很大,从标记数据中学习特征的监督方法已经几乎达到了饱和。这是因为大多数现代计算机视觉系统(受监督的)都试图通过查找大型数据集中数据点及其各自注释之间的模式来学习某种形式的图像表示。像GRAD-CAM[1]这样的工作提出了一种技术,可以为模型所做的决策提供可视化的解释,从而使决策更加透明和可解释。

传统的监督学习方法很大程度上依赖于可用的带注释的训练数据的数量。尽管有大量的可用数据,但缺乏注解促使研究人员寻找替代方法来利用它们。这就是自监督方法在推动深度学习的进程中发挥重要作用的地方,它不需要昂贵的标注,也不需要学习数据本身提供监督的特征表示。

监督学习不仅依赖昂贵的注释,而且还会遇到泛化错误、虚假的相关性和对抗攻击[2]等问题。最近,自监督学习方法集成了生成和对比方法,这些方法能够利用未标记的数据来学习潜在的表示。一种流行的方法是提出各种各样的代理任务,利用伪标签来帮助学习特征。诸如图像inpainting、灰度图像着色、拼图游戏、超分辨率、视频帧预测、视听对应等任务已被证明是学习良好表示的有效方法。

生成式模型在2014年引入生成对抗网络(GANs)[3]后得到普及。这项工作后来成为许多成功架构的基础,如CycleGAN[4]、StyleGAN[5]、PixelRNN[6]、Text2Image[7]、DiscoGAN [8]等。这些方法激发了更多的研究人员转向使用无标签数据在自监督的设置下训练深度学习模型。尽管取得了成功,研究人员开始意识到基于GAN的方法的一些并发症。它们很难训练,主要有两个原因: (a)不收敛——模型参数发散很多,很少收敛; (b)鉴别器太过成功,导致生成网络无法产生类似真实的假信号,导致学习无法继续。此外,生成器和判别器之间需要适当的同步,以防止判别器收敛和生成器发散。

成为VIP会员查看完整内容
0
46

相关内容

通过潜在空间的对比损失最大限度地提高相同数据样本的不同扩充视图之间的一致性来学习表示。对比式自监督学习技术是一类很有前途的方法,它通过学习编码来构建表征,编码使两个事物相似或不同

句法依存分析是自然语言处理中的一项重要任务。无监督依存解析旨在从没有正确解析树注释的句子中学习依存解析器。尽管无监督解析很困难,但它是一个有趣的研究方向,因为它能够利用几乎无限的无注释文本数据。它也为其他低资源解析的研究提供了基础。在本文中,我们调查了现有的无监督依赖解析方法,确定了两大类方法,并讨论了最近的趋势。我们希望我们的调查能够为研究者提供一些启示,并有助于今后对这一课题的研究。

成为VIP会员查看完整内容
0
12

视频中的异常检测是一个研究了十多年的问题。这一领域因其广泛的适用性而引起了研究者的兴趣。正因为如此,多年来出现了一系列广泛的方法,这些方法从基于统计的方法到基于机器学习的方法。在这一领域已经进行了大量的综述,但本文着重介绍了使用深度学习进行异常检测领域的最新进展。深度学习已成功应用于人工智能的许多领域,如计算机视觉、自然语言处理等。然而,这项调查关注的是深度学习是如何改进的,并为视频异常检测领域提供了更多的见解。本文针对不同的深度学习方法提供了一个分类。此外,还讨论了常用的数据集以及常用的评价指标。然后,对最近的研究方法进行了综合讨论,以提供未来研究的方向和可能的领域。

https://arxiv.org/abs/2009.14146

成为VIP会员查看完整内容
0
53

摘要

本文综述了迁移学习在强化学习问题设置中的应用。RL已经成为序列决策问题的关键的解决方案。随着RL在各个领域的快速发展。包括机器人技术和游戏,迁移学习是通过利用和迁移外部专业知识来促进学习过程来帮助RL的一项重要技术。在这篇综述中,我们回顾了在RL领域中迁移学习的中心问题,提供了一个最先进技术的系统分类。我们分析他们的目标,方法,应用,以及在RL框架下这些迁移学习技术将是可接近的。本文从RL的角度探讨了迁移学习与其他相关话题的关系,并探讨了RL迁移学习的潜在挑战和未来发展方向。

关键词:迁移学习,强化学习,综述,机器学习

介绍

强化学习(RL)被认为是解决连续决策任务的一种有效方法,在这种方法中,学习主体通过与环境相互作用,通过[1]来提高其性能。源于控制论并在计算机科学领域蓬勃发展的RL已被广泛应用于学术界和工业界,以解决以前难以解决的任务。此外,随着深度学习的快速发展,应用深度学习服务于学习任务的集成框架在近年来得到了广泛的研究和发展。DL和RL的组合结构称为深度强化学习[2](Deep Reinforcement Learning, DRL)。

DRL在机器人控制[3]、[4]、玩[5]游戏等领域取得了巨大的成功。在医疗保健系统[6]、电网[7]、智能交通系统[8]、[9]等领域也具有广阔的应用前景。

在这些快速发展的同时,DRL也面临着挑战。在许多强化学习应用中,环境模型通常是未知的,只有收集到足够的交互经验,agent才能利用其对环境的知识来改进其性能。由于环境反馈的部分可观察性、稀疏性或延迟性以及高维观察和/或行动空间等问题,学习主体在没有利用任何先验知识的情况下寻找好的策略是非常耗时的。因此,迁移学习作为一种利用外部专业知识来加速学习过程的技术,在强化学习中成为一个重要的课题。

在监督学习(SL)领域[10]中,TL得到了广泛的研究。与SL场景相比,由于MDP环境中涉及的组件更多,RL中的TL(尤其是DRL中的TL)通常更复杂。MDP的组件(知识来自何处)可能与知识转移到何处不同。此外,专家知识也可以采取不同的形式,以不同的方式转移,特别是在深度神经网络的帮助下。随着DRL的快速发展,以前总结用于RL的TL方法的努力没有包括DRL的最新发展。注意到所有这些不同的角度和可能性,我们全面总结了在深度强化学习(TL in DRL)领域迁移学习的最新进展。我们将把它们分成不同的子主题,回顾每个主题的理论和应用,并找出它们之间的联系。

本综述的其余部分组织如下:在第2节中,我们介绍了强化学习的背景,关键的DRL算法,并带来了这篇综述中使用的重要术语。我们还简要介绍了与TL不同但又紧密相关的相关研究领域(第2.3节)。

在第3节中,我们采用多种视角来评价TL方法,提供了对这些方法进行分类的不同方法(第3.1节),讨论了迁移源和目标之间的潜在差异(第3.2节),并总结了评价TL有效性的常用指标(第3.3节)。

第4节详细说明了DRL领域中最新的TL方法。特别是,所讨论的内容主要是按照迁移知识的形式组织的,如成型的奖励(4.1节)、先前的演示(4.2节)、专家策略(4.3节),或者按照转移发生的方式组织的,如任务间映射(4.4节)、学习可转移表示(4.5节和4.6节)等。我们在第5节讨论了TL在DRL中的应用,并在第6节提供了一些值得研究的未来展望。

成为VIP会员查看完整内容
0
75

随着图像处理,语音识别等人工智能技术的发展,很多学习方法尤其是采用深度学习框架的方法取得了优异的性能,在精度和速度方面有了很大的提升,但随之带来的问题也很明显,这些学习方法如果要获得稳定的学习效果,往往需要使用数量庞大的标注数据进行充分训练,否则就会出现欠拟合的情况而导致学习性能的下降。因此,随着任务复杂程度和数据规模的增加,对人工标注数据的数量和质量也提出了更高的要求,造成了标注成本和难度的增大。同时,单一任务的独立学习往往忽略了来自其他任务的经验信息,致使训练冗余重复因而导致了学习资源的浪费,也限制了其性能的提升。为了缓解这些问题,属于迁移学习范畴的多任务学习方法逐渐引起了研究者的重视。与单任务学习只使用单个任务的样本信息不同,多任务学习假设不同任务数据分布之间存在一定的相似性,在此基础上通过共同训练和优化建立任务之间的联系。这种训练模式充分促进任务之间的信息交换并达到了相互学习的目的,尤其是在各自任务样本容量有限的条件下,各个任务可以从其它任务获得一定的启发,借助于学习过程中的信息迁移能间接利用其它任务的数据,从而缓解了对大量标注数据的依赖,也达到了提升各自任务学习性能的目的。在此背景之下,本文首先介绍了相关任务的概念,并按照功能的不同对相关任务的类型进行划分后再对它们的特点进行逐一描述。然后,本文按照数据处理模式和任务关系建模过程的不同将当前的主流算法划分为两大类:结构化多任务学习算法和深度多任务学习算法。其中,结构化多任务学习算法采用线性模型,可以直接针对数据进行结构假设并且使用原有标注特征表述任务关系,同时,又可根据学习对象的不同将其细分为基于任务层面和基于特征层面两种不同结构,每种结构有判别式方法和生成式方法两种实现手段。与结构化多任务学习算法的建模过程不同,深度多任务学习算法利用经过多层特征抽象后的深层次信息进行任务关系描述,通过处理特定网络层中的参数达到信息共享的目的。紧接着,以两大类算法作为主线,本文详细分析了不同建模方法中对任务关系的结构假设、实现途径、各自的优缺点以及方法之间的联系。最后,本文总结了任务之间相似性及其紧密程度的判别依据,并且分析了多任务作用机制的有效性和内在成因,从归纳偏置和动态求解等角度阐述了多任务信息迁移的特点。 http://gb.oversea.cnki.net/KCMS/detail/detail.aspx?filename=JSJX20190417000&dbcode=CJFD&dbname=CAPJ2019

成为VIP会员查看完整内容
0
169

随着web技术的发展,多模态或多视图数据已经成为大数据的主要流,每个模态/视图编码数据对象的单个属性。不同的模态往往是相辅相成的。这就引起了人们对融合多模态特征空间来综合表征数据对象的研究。大多数现有的先进技术集中于如何融合来自多模态空间的能量或信息,以提供比单一模态的同行更优越的性能。最近,深度神经网络展示了一种强大的架构,可以很好地捕捉高维多媒体数据的非线性分布,对多模态数据自然也是如此。大量的实证研究证明了深多模态方法的优势,从本质上深化了多模态深特征空间的融合。在这篇文章中,我们提供了从浅到深空间的多模态数据分析领域的现有状态的实质性概述。在整个调查过程中,我们进一步指出,该领域的关键要素是多模式空间的协作、对抗性竞争和融合。最后,我们就这一领域未来的一些方向分享我们的观点。

成为VIP会员查看完整内容
0
180

自动驾驶一直是人工智能应用中最活跃的领域。几乎在同一时间,深度学习的几位先驱取得了突破,其中三位(也被称为深度学习之父)Hinton、Bengio和LeCun获得了2019年ACM图灵奖。这是一项关于采用深度学习方法的自动驾驶技术的综述。我们研究了自动驾驶系统的主要领域,如感知、地图和定位、预测、规划和控制、仿真、V2X和安全等。由于篇幅有限,我们将重点分析几个关键领域,即感知中的二维/三维物体检测、摄像机深度估计、数据、特征和任务级的多传感器融合、车辆行驶和行人轨迹的行为建模和预测。

https://arxiv.org/abs/2006.06091

成为VIP会员查看完整内容
1
78

当对大量的标记数据集合(如ImageNet)进行训练时,深度神经网络展示了它们在特殊监督学习任务(如图像分类)上的卓越表现。然而,创建这样的大型数据集需要大量的资源、时间和精力。这些资源在很多实际案例中可能无法获得,限制了许多深度学习方法的采用和应用。为了寻找数据效率更高的深度学习方法,以克服对大型标注数据集的需求,近年来,我们对半监督学习应用于深度神经网络的研究兴趣日益浓厚,通过开发新的方法和采用现有的半监督学习框架进行深度学习设置。在本文中,我们从介绍半监督学习开始,对深度半监督学习进行了全面的概述。然后总结了在深度学习中占主导地位的半监督方法。

成为VIP会员查看完整内容
0
107

​【导读】图像分类是计算机视觉中的基本任务之一,深度学习的出现是的图像分类技术趋于完善。最近,自监督学习与预训练技术的发展使得图像分类技术出现新的变化,这篇论文概述了最新在实际情况中少标签小样本等情况下,关于自监督学习、半监督、无监督方法的综述,值得看!

地址:

https://www.zhuanzhi.ai/paper/6d160a5f8634d25a2feda7a30e1e5132

摘要

虽然深度学习策略在计算机视觉任务中取得了突出的成绩,但仍存在一个问题。目前的策略严重依赖于大量的标记数据。在许多实际问题中,创建这么多标记的训练数据是不可行的。因此,研究人员试图将未标记的数据纳入到培训过程中,以获得与较少标记相同的结果。由于有许多同时进行的研究,很难掌握最近的发展情况。在这项调查中,我们提供了一个概述,常用的技术和方法,在图像分类与较少的标签。我们比较了21种方法。在我们的分析中,我们确定了三个主要趋势。1. 基于它们的准确性,现有技术的方法可扩展到实际应用中。2. 为了达到与所有标签的使用相同的结果所需要的监督程度正在降低。3.所有方法都共享公共技术,只有少数方法结合这些技术以获得更好的性能。基于这三个趋势,我们发现了未来的研究机会。

1. 概述

深度学习策略在计算机视觉任务中取得了显著的成功。它们在图像分类、目标检测或语义分割等各种任务中表现最佳。

图1: 这张图说明并简化了在深度学习训练中使用未标记数据的好处。红色和深蓝色的圆圈表示不同类的标记数据点。浅灰色的圆圈表示未标记的数据点。如果我们只有少量的标记数据可用,我们只能对潜在的真实分布(黑线)做出假设(虚线)。只有同时考虑未标记的数据点并明确决策边界,才能确定这种真实分布。

深度神经网络的质量受到标记/监督图像数量的强烈影响。ImageNet[26]是一个巨大的标记数据集,它允许训练具有令人印象深刻的性能的网络。最近的研究表明,即使比ImageNet更大的数据集也可以改善这些结果。但是,在许多实际的应用程序中,不可能创建包含数百万张图像的标记数据集。处理这个问题的一个常见策略是迁移学习。这种策略甚至可以在小型和专门的数据集(如医学成像[40])上改进结果。虽然这对于某些应用程序来说可能是一个实际的解决方案,但基本问题仍然存在: 与人类不同,监督学习需要大量的标记数据。

对于给定的问题,我们通常可以访问大量未标记的数据集。Xie等人是最早研究无监督深度学习策略来利用这些数据[45]的人之一。从那时起,未标记数据的使用被以多种方式研究,并创造了研究领域,如半监督、自我监督、弱监督或度量学习[23]。统一这些方法的想法是,在训练过程中使用未标记的数据是有益的(参见图1中的说明)。它要么使很少有标签的训练更加健壮,要么在某些不常见的情况下甚至超过了监督情况下的性能[21]。

由于这一优势,许多研究人员和公司在半监督、自我监督和非监督学习领域工作。其主要目标是缩小半监督学习和监督学习之间的差距,甚至超越这些结果。考虑到现有的方法如[49,46],我们认为研究处于实现这一目标的转折点。因此,在这个领域有很多正在进行的研究。这项综述提供了一个概述,以跟踪最新的在半监督,自监督和非监督学习的方法。

大多数综述的研究主题在目标、应用上下文和实现细节方面存在差异,但它们共享各种相同的思想。这项调查对这一广泛的研究课题进行了概述。这次调查的重点是描述这两种方法的异同。此外,我们还将研究不同技术的组合。

2. 图像分类技术

在这一节中,我们总结了关于半监督、自监督和非监督学习的一般概念。我们通过自己对某些术语的定义和解释来扩展这一总结。重点在于区分可能的学习策略和最常见的实现策略的方法。在整个综述中,我们使用术语学习策略,技术和方法在一个特定的意义。学习策略是算法的一般类型/方法。我们把论文方法中提出的每个算法都称为独立算法。方法可以分为学习策略和技术。技术是组成方法/算法的部分或思想。

2.1 分类方法

监督、半监督和自我监督等术语在文献中经常使用。很少有人给出明确的定义来区分这两个术语。在大多数情况下,一个粗略的普遍共识的意义是充分的,但我们注意到,在边界情况下的定义是多种多样的。为了比较不同的方法,我们需要一个精确的定义来区分它们。我们将总结关于学习策略的共识,并定义我们如何看待某些边缘案例。一般来说,我们根据使用的标记数据的数量和训练过程监督的哪个阶段来区分方法。综上所述,我们把半监督策略、自我学习策略和无监督学习策略称为reduced减约监督学习策略。图2展示了四种深度学习策略。

图2: 插图的四个深学习策略——红色和深蓝色的圆圈表示标记数据点不同的类。浅灰色的圆圈表示未标记的数据点。黑线定义了类之间的基本决策边界。带条纹的圆圈表示在训练过程的不同阶段忽略和使用标签信息的数据点。

监督学习 Supervised Learning

监督学习是深度神经网络图像分类中最常用的方法。我们有一组图像X和对应的标签或类z。设C为类别数,f(X)为X∈X的某个神经网络的输出,目标是使输出与标签之间的损失函数最小化。测量f(x)和相应的z之间的差的一个常用的损失函数是交叉熵。

迁移学习

监督学习的一个限制因素是标签的可用性。创建这些标签可能很昂贵,因此限制了它们的数量。克服这一局限的一个方法是使用迁移学习。

迁移学习描述了训练神经网络的两个阶段的过程。第一个阶段是在大型通用数据集(如ImageNet[26])上进行有无监督的训练。第二步是使用经过训练的权重并对目标数据集进行微调。大量的文献表明,即使在小的领域特定数据集[40]上,迁移学习也能改善和稳定训练。

半监督学习

半监督学习是无监督学习和监督学习的混合.

Self-supervised 自监督学习

自监督使用一个借托pretext任务来学习未标记数据的表示。借托pretext任务是无监督的,但学习表征往往不能直接用于图像分类,必须进行微调。因此,自监督学习可以被解释为一种无监督的、半监督的或其自身的一种策略。我们将自我监督学习视为一种特殊的学习策略。在下面,我们将解释我们是如何得出这个结论的。如果在微调期间需要使用任何标签,则不能将该策略称为无监督的。这与半监督方法也有明显的区别。标签不能与未标记的数据同时使用,因为借托pretext任务是无监督的,只有微调才使用标签。对我们来说,将标记数据的使用分离成两个不同的子任务本身就是一种策略的特征。

2.2 分类技术集合

在减少监督的情况下,可以使用不同的技术来训练模型。在本节中,我们将介绍一些在文献中多种方法中使用的技术。

一致性正则化 Consistency regularization

一个主要的研究方向是一致性正则化。在半监督学习过程中,这些正则化被用作数据非监督部分的监督损失的附加损失。这种约束导致了改进的结果,因为在定义决策边界时可以考虑未标记的数据[42,28,49]。一些自监督或无监督的方法甚至更进一步,在训练中只使用这种一致性正则化[21,2]。

虚拟对抗性训练(VAT)

VAT[34]试图通过最小化图像与转换后的图像之间的距离,使预测不受小转换的影响。

互信息(MI)

MI定义为联合分布和边缘分布[8]之间的Kullback Leiber (KL)散度。

熵最小化(EntMin)

Grandvalet和Bengio提出通过最小化熵[15]来提高半监督学习的输出预测。

Overclustering

过度聚类在减少监督的情况下是有益的,因为神经网络可以自行决定如何分割数据。这种分离在有噪声的数据中或在中间类被随机分为相邻类的情况下是有用的。

Pseudo-Labels

一种估计未知数据标签的简单方法是伪标签

3. 图像分类模型

3.1 半监督学习

四种选择的半监督方法的图解——使用的方法在每张图像下面给出。输入在左边的蓝色方框中给出。在右侧提供了该方法的说明。一般来说,这个过程是自上而下组织的。首先,输入图像经过无或两个不同的随机变换预处理。自动增广[9]是一种特殊的增广技术。下面的神经网络使用这些预处理图像(x, y)作为输入。损失的计算(虚线)对于每种方法都是不同的,但是共享公共部分。所有的方法都使用了标记和预测分布之间的交叉熵(CE)。所有的方法还使用了不同预测输出分布(Pf(x), Pf(y))之间的一致性正则化。

3.2 自监督学习

四种选择的自我监督方法的图解——使用的方法在每张图像下面给出。输入在左边的红色方框中给出。在右侧提供了该方法的说明。微调部分不包括在内。一般来说,这个过程是自上而下组织的。首先,对输入图像进行一两次随机变换预处理或分割。下面的神经网络使用这些预处理图像(x, y)作为输入。损失的计算(虚线)对于每种方法都是不同的。AMDIM和CPC使用网络的内部元素来计算损失。DeepCluster和IIC使用预测的输出分布(Pf(x)、Pf(y))来计算损耗

3.3 21种图像分类方法比较

21种图像分类方法及其使用技术的概述——在左侧,第3节中回顾的方法按学习策略排序。第一行列出了在2.2小节中讨论过的可能的技术。根据是否可以使用带标签的数据,将这些技术分为无监督技术和有监督技术。技术的缩写也在第2.2小节中给出。交叉熵(Cross-entropy, CE)将CE的使用描述为训练损失的一部分。微调(FT)描述了交叉熵在初始训练后(例如在一个借口任务中)对新标签的使用。(X)指该技术不是直接使用,而是间接使用。个别的解释由所指示的数字给出。1 - MixMatch通过锐化预测[3],隐式地实现了熵最小化。2 - UDA预测用于过滤无监督数据的伪标签。3 -尽量减少相互信息的目的作为借口任务,例如视图之间的[2]或层之间的[17]。4 -信息的丢失使相互信息间接[43]最大化。5 - Deep Cluster使用K-Means计算伪标签,以优化分配为借口任务。6 - DAC使用元素之间的余弦距离来估计相似和不相似的项。可以说DAC为相似性问题创建了伪标签。

4. 实验比较结果

报告准确度的概述——第一列说明使用的方法。对于监督基线,我们使用了最好的报告结果,作为其他方法的基线。原始论文在准确度后的括号内。第二列给出了体系结构及其参考。第三列是预印本的出版年份或发行年份。最后四列报告了各自数据集的最高准确度分数%。

5 结论

在本文中,我们概述了半监督、自监督和非监督技术。我们用21种不同的方法分析了它们的异同和组合。这项分析确定了几个趋势和可能的研究领域。

我们分析了不同学习策略(半监督学习策略、自监督学习策略和无监督学习策略)的定义,以及这些学习策略中的常用技术。我们展示了这些方法一般是如何工作的,它们使用哪些技术,以及它们可以被归类为哪种策略。尽管由于不同的体系结构和实现而难以比较这些方法的性能,但我们确定了三个主要趋势。

ILSVRC-2012的前5名正确率超过90%,只有10%的标签表明半监督方法适用于现实问题。然而,像类别不平衡这样的问题并没有被考虑。未来的研究必须解决这些问题。

监督和半监督或自监督方法之间的性能差距正在缩小。有一个数据集甚至超过了30%。获得可与全监督学习相比的结果的标签数量正在减少。未来的研究可以进一步减少所需标签的数量。我们注意到,随着时间的推移,非监督方法的使用越来越少。这两个结论使我们认为,无监督方法在未来的现实世界中对图像分类将失去意义。

我们的结论是,半监督和自监督学习策略主要使用一套不同的技术。通常,这两种策略都使用不同技术的组合,但是这些技术中很少有重叠。S4L是目前提出的唯一一种消除这种分离的方法。我们确定了不同技术的组合有利于整体性能的趋势。结合技术之间的微小重叠,我们确定了未来可能的研究机会。

参考文献:

[1] B. Athiwaratkun, M. Finzi, P. Izmailov, and A. G. Wilson. There are many consistent explanations of unlabeled data: Why you should average. In International Conference on Learning Representations, 2019.

[2] P. Bachman, R. D. Hjelm, and W. Buchwalter. Learning representations by maximizing mutual information across views. In Advances in Neural Information Processing Systems, pages 15509–15519, 2019.

[3] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. A. Raffel. Mixmatch: A holistic approach to semi-supervised learning. In Advances in Neural Information Processing Systems, pages 5050–5060, 2019.

[4] M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering for unsupervised learning of visual features. In Proceedings of the European Conference on Computer Vision (ECCV), pages 132–149, 2018.

[5] J. Chang, L. Wang, G. Meng, S. Xiang, and C. Pan. Deep adaptive image clustering. 2017 IEEE International Conference on Computer Vision (ICCV), pages 5880–5888, 2017.

成为VIP会员查看完整内容
0
133
小贴士
相关VIP内容
专知会员服务
12+阅读 · 2020年10月27日
专知会员服务
53+阅读 · 2020年9月30日
专知会员服务
75+阅读 · 2020年9月20日
专知会员服务
114+阅读 · 2020年9月7日
专知会员服务
169+阅读 · 2020年7月10日
专知会员服务
180+阅读 · 2020年6月16日
专知会员服务
78+阅读 · 2020年6月14日
专知会员服务
107+阅读 · 2020年6月12日
【文献综述】图像分割综述,224篇参考文献,附58页PDF
专知会员服务
84+阅读 · 2019年6月16日
相关论文
Yiming Li,Baoyuan Wu,Yong Jiang,Zhifeng Li,Shu-Tao Xia
11+阅读 · 2020年10月26日
Liang Chen,Jintang Li,Jiaying Peng,Tao Xie,Zengxu Cao,Kun Xu,Xiangnan He,Zibin Zheng
33+阅读 · 2020年3月10日
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
Jie Gui,Zhenan Sun,Yonggang Wen,Dacheng Tao,Jieping Ye
43+阅读 · 2020年1月20日
Qizhe Xie,Zihang Dai,Eduard Hovy,Minh-Thang Luong,Quoc V. Le
4+阅读 · 2019年7月10日
Evolutionary Data Measures: Understanding the Difficulty of Text Classification Tasks
Edward Collins,Nikolai Rozanov,Bingbing Zhang
4+阅读 · 2018年11月5日
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks
Xintao Wang,Ke Yu,Shixiang Wu,Jinjin Gu,Yihao Liu,Chao Dong,Chen Change Loy,Yu Qiao,Xiaoou Tang
5+阅读 · 2018年9月17日
Zuxuan Wu,Tushar Nagarajan,Abhishek Kumar,Steven Rennie,Larry S. Davis,Kristen Grauman,Rogerio Feris
5+阅读 · 2018年3月30日
Orest Kupyn,Volodymyr Budzan,Mykola Mykhailych,Dmytro Mishkin,Jiri Matas
8+阅读 · 2018年1月16日
Tero Karras,Timo Aila,Samuli Laine,Jaakko Lehtinen
3+阅读 · 2017年11月3日
Top