【导读】来自东京RIKEN研究中心的Emtiyaz Khan在SPCOM2020上给了关于以贝叶斯原理进行深度学习的教程《Deep Learning with Bayesian Principles》,共有256页ppt,以及撰写了最新的论文,讲述贝叶斯和深度学习如何结合到一起进行学习新算法,提出了一种基于贝叶斯原理的学习规则,它使我们能够连接各种各样的学习算法。利用这一规则,可以在概率图形模型、连续优化、深度学习、强化学习、在线学习和黑盒优化等领域得到广泛的学习算法。非常具有启发性,值得查看!
教程地址: https://ece.iisc.ac.in/~spcom/2020/tutorials.html#Tut6
Deep Learning with Bayesian Principles
深度学习和贝叶斯学习被认为是两个完全不同的领域,通常用于互补的设置情景。显然,将这两个领域的思想结合起来是有益的,但鉴于它们的根本区别,我们如何才能做到这一点呢?
本教程将介绍现代贝叶斯原理来填补这一空白。利用这些原理,我们可以推出一系列学习算法作为特例,例如,从经典算法,如线性回归和前向后向算法,到现代深度学习算法,如SGD、RMSprop和Adam。然后,这个视图提供了新的方法来改进深度学习的各个方面,例如,不确定性、健壮性和解释。它也使设计新的方法来解决挑战性的问题,如那些出现在主动学习,持续学习,强化学习等。
总的来说,我们的目标是让贝叶斯和深度学习比以往任何时候都更接近,并激励它们一起工作,通过结合他们的优势来解决具有挑战性的现实问题。