异常检测已经得到了广泛的研究和应用。建立一个有效的异常检测系统需要研究者和开发者从嘈杂的数据中学习复杂的结构,识别动态异常模式,用有限的标签检测异常。与经典方法相比,近年来深度学习技术的进步极大地提高了异常检测的性能,并将异常检测扩展到广泛的应用领域。本教程将帮助读者全面理解各种应用领域中基于深度学习的异常检测技术。首先,我们概述了异常检测问题,介绍了在深度模型时代之前采用的方法,并列出了它们所面临的挑战。然后我们调查了最先进的深度学习模型,范围从构建块神经网络结构,如MLP, CNN,和LSTM,到更复杂的结构,如自动编码器,生成模型(VAE, GAN,基于流的模型),到深度单类检测模型,等等。此外,我们举例说明了迁移学习和强化学习等技术如何在异常检测问题中改善标签稀疏性问题,以及在实际中如何收集和充分利用用户标签。其次,我们讨论来自LinkedIn内外的真实世界用例。本教程最后讨论了未来的趋势。

https://sites.google.com/view/kdd2020deepeye/home

成为VIP会员查看完整内容
108

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【RecSys2020干货教程】对抗机器学习推荐系统,186页ppt
专知会员服务
52+阅读 · 2020年10月10日
最新《深度学习视频异常检测》2020综述论文,21页pdf
专知会员服务
84+阅读 · 2020年9月30日
【KDD2020】图深度学习:基础、进展与应用,182页ppt
专知会员服务
135+阅读 · 2020年8月30日
【KDD2020】图神经网络:基础与应用,322页ppt
专知会员服务
76+阅读 · 2020年8月30日
专知会员服务
169+阅读 · 2020年8月26日
专知会员服务
46+阅读 · 2020年8月23日
【ICML2020】基于模型的强化学习方法教程,279页ppt
专知会员服务
127+阅读 · 2020年7月20日
图表示学习Graph Embedding综述
AINLP
33+阅读 · 2020年5月17日
图嵌入(Graph embedding)综述
人工智能前沿讲习班
449+阅读 · 2019年4月30日
7个实用的深度学习技巧
机器学习算法与Python学习
16+阅读 · 2019年3月6日
深度学习综述(下载PDF版)
机器学习算法与Python学习
27+阅读 · 2018年7月3日
ICML17 Seq2Seqtutorial精品资料分享
深度学习与NLP
5+阅读 · 2017年8月10日
Deep Co-Training for Semi-Supervised Image Segmentation
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
VIP会员
相关VIP内容
【RecSys2020干货教程】对抗机器学习推荐系统,186页ppt
专知会员服务
52+阅读 · 2020年10月10日
最新《深度学习视频异常检测》2020综述论文,21页pdf
专知会员服务
84+阅读 · 2020年9月30日
【KDD2020】图深度学习:基础、进展与应用,182页ppt
专知会员服务
135+阅读 · 2020年8月30日
【KDD2020】图神经网络:基础与应用,322页ppt
专知会员服务
76+阅读 · 2020年8月30日
专知会员服务
169+阅读 · 2020年8月26日
专知会员服务
46+阅读 · 2020年8月23日
【ICML2020】基于模型的强化学习方法教程,279页ppt
专知会员服务
127+阅读 · 2020年7月20日
相关资讯
图表示学习Graph Embedding综述
AINLP
33+阅读 · 2020年5月17日
图嵌入(Graph embedding)综述
人工智能前沿讲习班
449+阅读 · 2019年4月30日
7个实用的深度学习技巧
机器学习算法与Python学习
16+阅读 · 2019年3月6日
深度学习综述(下载PDF版)
机器学习算法与Python学习
27+阅读 · 2018年7月3日
ICML17 Seq2Seqtutorial精品资料分享
深度学习与NLP
5+阅读 · 2017年8月10日
微信扫码咨询专知VIP会员