深入机器学习模型的超参数调整,关注什么是超参数以及它们是如何工作的。这本书讨论了不同的超参数调优技术,从基础到高级方法。
这是一个关于超参数优化的分步指南,从什么是超参数以及它们如何影响机器学习模型的不同方面开始。然后介绍一些基本的超参数优化算法。此外,作者利用分布式优化方法解决了时间和内存约束的问题。接下来您将讨论超参数搜索的贝叶斯优化,它从以前的历史中吸取了教训。
这本书讨论了不同的框架,如Hyperopt和Optuna,它实现了基于顺序模型的全局优化(SMBO)算法。在这些讨论中,您将关注不同的方面,比如搜索空间的创建和这些库的分布式优化。
机器学习中的超参数优化有助于理解这些算法是如何工作的,以及如何在现实数据科学问题中使用它们。最后一章总结了超参数优化在自动机器学习中的作用,并以一个创建自己的自动脚本的教程结束。
超参数优化是一项冗长乏味的任务,所以请坐下来,让这些算法来完成您的工作。你将学到什么
这本书是给谁的
在构建机器学习模型时选择正确的超参数是数据科学从业者面临的最大问题之一。这本书是超参数优化(HPO)的指南。它从超参数的最基本定义开始,并带您使用高级HPO技术构建您自己的AutoML脚本。这本书是打算为学生和数据科学专业人员。这本书由五章组成。
这本书的目的是让读者以一种直观和实用的方式来理解HPO的概念,每个部分都提供了代码实现。我希望你能喜欢。