学习设计、构建和部署由机器学习(ML)支持的应用程序所必需的技能。通过这本亲力亲为的书,您将构建一个示例ML驱动的应用程序,从最初的想法到部署的产品。数据科学家、软件工程师和产品经理—包括有经验的实践者和新手—将逐步学习构建真实的ML应用程序所涉及的工具、最佳实践和挑战。

作者Emmanuel Ameisen是一位经验丰富的数据科学家,他领导了一个人工智能教育项目,通过代码片段、插图、截图和对行业领袖的采访展示了实用的ML概念。第1部分将告诉您如何计划ML应用程序并度量成功。第2部分解释了如何构建一个工作的ML模型。第三部分演示了改进模型的方法,直到它满足您最初的设想。第4部分介绍部署和监控策略。

这本书会对你有所帮助:

  • 定义你的产品目标,设置一个机器学习问题
  • 快速构建第一个端到端管道并获取初始数据集
  • 训练和评估您的ML模型并解决性能瓶颈
  • 在生产环境中部署和监控您的模型

成为VIP会员查看完整内容
0
34

相关内容

获得金融、医疗保健和零售领域的机器学习实用技能。这本书通过提供这些领域的案例研究,使用了动手的方法:你将看到如何使用机器学习作为商业增强工具的例子。作为一名领域专家,您不仅会发现机器学习在金融、医疗保健和零售领域是如何应用的,而且还会通过实施机器学习的实际案例研究进行工作。

使用Python的机器学习应用程序分为三个部分,分别针对每个领域(医疗保健、金融和零售)。每一节都以机器学习和该领域的关键技术进展的概述开始。然后,您将通过案例研究了解更多关于组织如何改变其所选择市场的游戏规则。这本书有实际的案例研究与Python代码和领域特定的创新想法赚钱的机器学习。

你会学到什么

  • 发现应用的机器学习过程和原理
  • 在医疗保健、金融和零售领域实现机器学习
  • 避免应用机器学习的陷阱
  • 在三个主题领域构建Python机器学习示例

这本书是给谁的

  • 数据科学家和机器学习专家。
成为VIP会员查看完整内容
0
64

内容简介

要想在数据科学、机器学习、计算机图形学和密码学方面工作,需要强大的数学技能。

本书教授这些热门职业所需的数学,专注于您作为开发人员需要了解的内容。这本书充满了大量有用的图形和200多个练习及迷你项目,为当今一些最热门的编程领域中的有趣且有利可图的职业开启了大门。

关于技术

大多数企业意识到他们需要应用数据科学和有效的机器学习来获得并保持竞争优势。要构建这些应用程序,他们需要开发人员轻松编写代码并使用沉浸在统计,线性代数和微积分中的工具。

数学在其他现代应用中也扮演着不可或缺的角色,如游戏开发,计算机图形和动画,图像和信号处理,定价引擎和股票市场分析。无论你是一个没有核心大学数学基础的自学成才的程序员,还是你只需要重新点燃数学余烬,这本书就是激发你技能的好方法。

关于本书

Math for Programmers教你解决代码中的数学问题。由于作者的幽默和引人入胜的风格,你会喜欢像程序员一样思考数学。通过可访问的示例,场景和练习,非常适合工作开发人员,您将首先探索2D和3D中的函数和几何。

有了这些基本构建模块,您将进入机器学习和游戏编程的面包和黄油数学,包括矩阵和线性变换,导数和积分,微分方程,概率,分类算法等。不要担心它听起来令人生畏,或者更糟糕的是,无聊!编码和数学家保罗奥兰德会让学习这些重要概念变得相关和有趣!

本实践教程中的实际示例包括构建和渲染3D模型,使用矩阵变换的动画,操纵图像和声波,以及为视频游戏构建物理引擎。在此过程中,你将通过大量练习来测试自己,以确保牢牢掌握这些概念。当你完成后,你将拥有当今最流行的技术趋势所必需的数学技能的坚实基础。

你将学到

  • 2D和3D矢量数学
  • 矩阵和线性变换
  • 线性代数的核心概念
  • 具有一个或多个变量的微积分
  • 回归,分类和聚类的算法
  • 有趣的现实世界的例子
  • 超过200个练习和迷你项目
成为VIP会员查看完整内容
0
83

深入机器学习模型的超参数调整,关注什么是超参数以及它们是如何工作的。这本书讨论了不同的超参数调优技术,从基础到高级方法。

这是一个关于超参数优化的分步指南,从什么是超参数以及它们如何影响机器学习模型的不同方面开始。然后介绍一些基本的超参数优化算法。此外,作者利用分布式优化方法解决了时间和内存约束的问题。接下来您将讨论超参数搜索的贝叶斯优化,它从以前的历史中吸取了教训。

这本书讨论了不同的框架,如Hyperopt和Optuna,它实现了基于顺序模型的全局优化(SMBO)算法。在这些讨论中,您将关注不同的方面,比如搜索空间的创建和这些库的分布式优化。

机器学习中的超参数优化有助于理解这些算法是如何工作的,以及如何在现实数据科学问题中使用它们。最后一章总结了超参数优化在自动机器学习中的作用,并以一个创建自己的自动脚本的教程结束。

超参数优化是一项冗长乏味的任务,所以请坐下来,让这些算法来完成您的工作。你将学到什么

  • 了解超参数中的更改如何影响模型的性能。
  • 对数据科学问题应用不同的超参数调优算法
  • 使用贝叶斯优化方法来创建高效的机器学习和深度学习模型
  • 使用计算机集群分发超参数优化
  • 利用超参数优化方法实现机器自动学习

这本书是给谁的

  • 从事机器学习的专业人员和学生。

在构建机器学习模型时选择正确的超参数是数据科学从业者面临的最大问题之一。这本书是超参数优化(HPO)的指南。它从超参数的最基本定义开始,并带您使用高级HPO技术构建您自己的AutoML脚本。这本书是打算为学生和数据科学专业人员。这本书由五章组成。

  • 第1章帮助您理解超参数是如何影响模型构建的整个过程的。它告诉我们HPO的重要性。
  • 第2章介绍了基本且易于实现的HPO方法。
  • 第3章介绍了解决时间和内存限制的各种技术。
  • 第4章和第5章讨论了贝叶斯优化、相关库和AutoML。

这本书的目的是让读者以一种直观和实用的方式来理解HPO的概念,每个部分都提供了代码实现。我希望你能喜欢。

成为VIP会员查看完整内容
1
69

《操作反模式,DevOps解决方案》展示了如何在大多数开发人员工作的不完美环境中实现DevOps技术。部分技术教程、部分参考手册和部分心理手册,本实用指南向您展示了在您无法灵活地对组织结构进行全面更改时,将DevOps引入您的团队的现实方法。

DevOps解决方案专注于从下至上的过程改进,包括操作反模式中的所有内容,它对您的团队是可操作的——从构建流线化的工作流系统到开发仪表板和度量性能正确方面的操作指标。为了更好地理解个人和组织的行为,您还将学习为什么DevOps技术是有效的背后的心理原因。

http://file.allitebooks.com/20201107/Operations%20Anti-Patterns,%20DevOps%20Solutions.pdf

成为VIP会员查看完整内容
0
10

这本书是关于运用机器和深度学习来解决石油和天然气行业的一些挑战。这本书开篇简要讨论石油和天然气勘探和生产生命周期中不同阶段的数据流工业操作。这导致了对一些有趣问题的调查,这些问题很适合应用机器和深度学习方法。最初的章节提供了Python编程语言的基础知识,该语言用于实现算法;接下来是监督和非监督机器学习概念的概述。作者提供了使用开源数据集的行业示例以及对算法的实际解释,但没有深入研究所使用算法的理论方面。石油和天然气行业中的机器学习涵盖了包括地球物理(地震解释)、地质建模、油藏工程和生产工程在内的各种行业主题。

在本书中,重点在于提供一种实用的方法,提供用于实现机器的逐步解释和代码示例,以及用于解决油气行业现实问题的深度学习算法。

你将学到什么

  • 了解石油和天然气行业的端到端的行业生命周期和数据流
  • 了解计算机编程和机器的基本概念,以及实现所使用的算法所需的深度学习
  • 研究一些有趣的行业问题,这些问题很有可能被机器和深度学习解决
  • 发现在石油和天然气行业中执行机器和深度学习项目的实际考虑和挑战

这本书是给谁的

  • 石油和天然气行业的专业人员,他们可以受益于对机器的实际理解和解决现实问题的深度学习方法。
成为VIP会员查看完整内容
0
63

学习设计思维的基本原理,以及如何在定义软件开发和人工智能解决方案时应用设计思维技术。设计思维是一种创新的方法,它能识别问题并产生解决方案,并能通过原型设计迅速得到验证。

这本书提供了设计思维的简史和过程的概述。然后深入探讨在设计思维研讨会中使用的方法和工具的更多细节,从而得出有用的原型。提供以下指引:

  • 为设计思考工作坊做准备
  • 发现可能被解决的潜在业务问题
  • 优先考虑可能的解决方案
  • 识别和描述利益相关者
  • 为开发选择正确的原型
  • 限制了原型构建的范围和最佳实践

本书最后讨论了成功原型的操作化的最佳实践,并描述了对成功采用至关重要的变更管理技术。您可以使用从阅读本书中获得的知识,将设计思维技术融入到您的软件开发和AI项目中,并确保及时和成功地交付解决方案。

你将学到什么

  • 获得什么是设计思维以及何时应用该技术的基本知识
  • 发现在研讨会中使用的准备和促进技巧
  • 了解想法是如何产生的,然后通过原型验证
  • 了解实现最佳实践,包括变更管理考虑事项

这本书是给谁的呢

  • 商业决策者和项目利益相关者,以及IT项目所有者,他们寻求一种方法,导致快速开发成功的软件和AI原型,证明真正的商业价值。也为数据科学家,开发人员和系统集成商谁有兴趣促进或利用设计思维研讨会,以推动潜在的软件开发和人工智能项目背后的势头。
成为VIP会员查看完整内容
1
62

介绍

这本书在保持非常务实的教导和结果导向付出很大的精力。构建聊天机器人不只是完成一个教程或遵循几个步骤,它本身就是一种技能。这本书肯定不会用大量的文本和过程让你感到无聊;相反,它采用的是边做边学的方法。到目前为止,在你的生活中,你肯定至少使用过一个聊天机器人。无论你是不是一个程序员,一旦你浏览这本书,你会发现构建模块的聊天机器人,所有的奥秘将被揭开。建立聊天机器人可能看起来很困难,但这本书将让你使它如此容易。我们的大脑不是用来直接处理复杂概念的;相反,我们一步一步地学习。当你读这本书的时候,从第一章到最后一章,你会发现事情的进展是多么的清晰。虽然你可以直接翻到任何一章,但我强烈建议你从第一章开始,因为它肯定会支持你的想法。这本书就像一个网络系列,你在读完一章之后就无法抗拒下一章的诱惑。在阅读完这本书后,你所接触到的任何聊天机器人都会在你的脑海中形成一幅关于聊天机器人内部是如何设计和构建的画面。

这本书适合谁?

这本书将作为学习与聊天机器人相关的概念和学习如何建立他们的一个完整的资源。那些将会发现这本书有用的包括: Python web开发人员希望扩大他们的知识或职业到聊天机器人开发。 学生和有抱负的程序员想获得一种新的技能通过亲身体验展示的东西,自然语言爱好者希望从头开始学习。 企业家如何构建一个聊天机器人的伟大的想法,但没有足够的技术关于如何制作聊天机器人的可行性信息。 产品/工程经理计划与聊天机器人相关项目。

如何使用这本书?

请记住,这本书的写作风格和其他书不一样。读这本书的时候要记住,一旦你完成了这本书,你就可以自己建造一个聊天机器人,或者教会别人如何建造一个聊天机器人。在像阅读其他书籍一样阅读这本书之前,务必记住以下几点:

  • 这本书涵盖了构建聊天机器人所需的几乎所有内容,而不是现有内容。
  • 这本书是关于花更多的时间在你的系统上做事情的,这本书就在你身边。确保您执行每个代码片段并尝试编写代码;不要复制粘贴。
  • 一定要按照书中的步骤去做;如果你不理解一些事情,不要担心。你将在本章的后面部分了解到。
  • 可以使用本书所提供的源代码及Jupyter NoteBook作为参考。

内容概要

  • Chapter 1: 在本章中,你将从商业和开发人员的角度了解与聊天机器人相关的事情。这一章为我们熟悉chatbots概念并将其转换为代码奠定了基础。希望在本章结束时,你会明白为什么你一定要为自己或你的公司创建一个聊天机器人。
  • Chapter 2: 在本章中会涉及聊天机器人的自然语言处理,你将学习到聊天机器人需要NLP时应该使用哪些工具和方法。这一章不仅教你在NLP的方法,而且还采取实际的例子和演示与编码的例子。本章还讨论了为什么使用特定的NLP方法可能需要在聊天机器人。注意,NLP本身就是一种技能。
  • Chapter 3: 在本章中,你将学习如何使用像Dialogflow这样的工具以一种友好而简单的方式构建聊天机器人。如果你不是程序员,你肯定会喜欢它,因为它几乎不需要编程技能。
  • Chapter 4:在本章中,你将学习如何以人们想要的方式构建聊天机器人。标题说的很艰难,但一旦你完成了前一章,你会想要更多,因为这一章将教如何建立内部聊天机器人从零开始,以及如何使用机器学习算法训练聊天机器人。
  • Chapter 5:在本章中,部署你的聊天机器人纯粹是设计给你的聊天机器人应用一个最后的推动。当你经历了创建聊天机器人的简单和艰难的过程后,你肯定不想把它留给自己。你将学习如何展示你的聊天机器人到世界使用Facebook和Slack,最后,整合他们在你自己的网站。
成为VIP会员查看完整内容
Building Chatbots with Python.pdf
0
108

找到有合适技能的人。本书阐明了创建高效能数据集成团队的最佳实践,使您能够理解计划、设计和监视一次性迁移和日常集成系统的技能和需求、文档和解决方案。

数据的增长是爆炸式的。随着跨企业系统的多个信息源的不断到达,将这些系统组合成一个单一的、内聚的、可记录的单元变得比以往任何时候都更加重要。但是,与其他软件规程相比,集成的方法有很大的不同,它要求能够编写代码、协作并将复杂的业务规则分解为可伸缩的模型。

数据迁移和集成可能很复杂。在许多情况下,项目团队将实际的迁移保留到项目的最后一个周末,任何问题都可能导致错过最后期限,或者在最坏的情况下导致需要在部署后进行协调的数据损坏。本书详细介绍了如何进行战略规划以避免这些最后时刻的风险,以及如何为未来的集成项目构建正确的解决方案。

你会学到什么

  • 理解集成的“语言”,以及它们在优先级和所有权方面的关系
  • 创建有价值的文档,带领您的团队从发现到部署
  • 研究当今市场上最重要的集成工具
  • 监视您的错误日志,并查看输出如何增加持续改进的周期
  • 为整个企业提供有价值的集成解决方案

这本书是给谁看的

构建相应实践的执行和集成团队领导。它也适用于需要额外熟悉ETL工具、集成过程和相关项目可交付成果的集成架构师、开发人员和业务分析人员

成为VIP会员查看完整内容
0
59

这本书在对算法工作原理的高层次理解和对优化模型的具体细节的了解之间找到一个平衡点。这本书将给你的信心和技能时,开发所有主要的机器学习模型。在这本Pro机器学习算法中,您将首先在Excel中开发算法,以便在用Python/R实现模型之前,实际了解可以在模型中调优的所有细节。

你将涵盖所有主要的算法:监督和非监督学习,其中包括线性/逻辑回归;k - means聚类;主成分分析;推荐系统;决策树;随机森林;“GBM”;和神经网络。您还将通过CNNs、RNNs和word2vec等文本挖掘工具了解最新的深度学习。你不仅要学习算法,还要学习特征工程的概念来最大化模型的性能。您将看到该理论与案例研究,如情绪分类,欺诈检测,推荐系统,和图像识别,以便您得到最佳的理论和实践为工业中使用的绝大多数机器学习算法。在学习算法的同时,您还将接触到在所有主要云服务提供商上运行的机器学习模型。

你会学到什么?

  • 深入了解所有主要的机器学习和深度学习算法
  • 充分理解在构建模型时要避免的陷阱
  • 在云中实现机器学习算法
  • 通过对每种算法的案例研究,采用动手实践的方法
  • 学习集成学习的技巧,建立更精确的模型
  • 了解R/Python编程的基础知识和Keras深度学习框架

这本书是给谁看的

希望转换到数据科学角色的业务分析师/ IT专业人员。想要巩固机器学习知识的数据科学家。

成为VIP会员查看完整内容
0
116

【导读】机器学习系统:这个规模的设计是一个示例丰富的指南,教你如何在你的机器学习系统中实现反应式设计解决方案,使它们像一个构建良好的web应用一样可靠。

本文首先介绍了反应性机器学习基础,然后介绍如何建立一个反应式机器学习系统(收集数据、生成特征、学习模型、评估模型、发布模型),最后介绍如何操作一个机器学习系统。

  1. 作者介绍 Jeff Smith使用Scala和Spark构建大规模的机器学习系统。在过去的十年中,他一直在纽约,旧金山和香港的多家初创公司从事数据科学应用的研究。他在博客中谈到了构建现实世界机器学习系统的各个方面。

  2. 内容大纲 Part 1. 反应性机器学习基础

  • 第一章. 反应性机器学习
  • 第二章. 使用反应性工具

Part 2. 建立一个反应式机器学习系统(Building a reactive machine learning system)

  • 第三章. 收集数据(Collecting data)
  • 第四章. 生成特征(Generating features)
  • 第五章. 学习模型(Learning models)
  • 第六章. 评估模型( Evaluating models)
  • 第七章. 发布模型(Publishing models)
  • 第八章. 作答(Responding)

Part 3. 操作一个机器学习系统(Operating a machine learning system)

  • 第三章. 陈述(Delivering)
  • 第四章. 发展智力(Evolving intelligence)
成为VIP会员查看完整内容
0
65
小贴士
相关主题
相关资讯
相关论文
Priyanka Mary Mammen
1+阅读 · 1月14日
Joshua Robinson,Ching-Yao Chuang,Suvrit Sra,Stefanie Jegelka
4+阅读 · 2020年10月9日
Taking Human out of Learning Applications: A Survey on Automated Machine Learning
Quanming Yao,Mengshuo Wang,Yuqiang Chen,Wenyuan Dai,Hu Yi-Qi,Li Yu-Feng,Tu Wei-Wei,Yang Qiang,Yu Yang
10+阅读 · 2019年1月17日
Risk-Aware Active Inverse Reinforcement Learning
Daniel S. Brown,Yuchen Cui,Scott Niekum
4+阅读 · 2019年1月8日
Alexander Jung
9+阅读 · 2018年8月19日
Minghao Hu,Yuxing Peng,Zhen Huang,Xipeng Qiu,Furu Wei,Ming Zhou
9+阅读 · 2018年4月25日
Guangyu Robert Yang,Igor Ganichev,Xiao-Jing Wang,Jonathon Shlens,David Sussillo
3+阅读 · 2018年3月16日
Hyrum S. Anderson,Anant Kharkar,Bobby Filar,David Evans,Phil Roth
3+阅读 · 2018年1月30日
Tadas Baltrušaitis,Chaitanya Ahuja,Louis-Philippe Morency
118+阅读 · 2017年8月1日
Top