随着工业界对深度学习模型的使用越来越广泛,机器学习即服务(MLaas)逐渐兴起,也利用了这些模型创造了可观的收入。由于这些深度学习模型可以轻松地被未经授权的第三方抄袭与剽窃,深度学习模型的知识产权 (IPR)保护也因此成了各公司会专注的问题。虽然目前已有用于卷积神经网络(CNN)的 IPR 保护方法,但是却不能直接使用在生成对抗网络(GANs)——另一种被广泛用于生成逼真图像的深度学习模型。因此,本文提出了一种基于黑盒与白盒的 GAN 模型 IPR 保护方法。实验结果表明,本方法并不会损害 GAN 本来的性能(如图像生成、图像超分辨率以及样式转换)。本方法也能够抵御去除嵌入的水印(removal)和模糊(ambiguity)攻击。本次分享将会解说如何基于黑盒与白盒的方式保护对抗生成网络(GANs),以及如何抵御各种水印攻击。

https://www.zhuanzhi.ai/paper/60a2152ff08a2ea98f6b6ebfa45cedb2

成为VIP会员查看完整内容
11

相关内容

生成对抗网络(GAN)是Ian Goodfellow及其同事在2014年设计的一类机器学习框架。两个神经网络在游戏中相互竞争(从博弈论的角度讲,通常但并非总是以零和博弈的形式)。 在给定训练集的情况下,该技术将学习生成具有与训练集相同的统计数据的新数据。 例如,受过照片训练的GAN可以生成新照片,这些新照片至少对人类观察者而言表面上看起来真实,具有许多现实特征。 尽管GAN最初是作为一种形式的无监督学习模型提出的,但它也已被证明可用于半监督学习,完全监督学习和强化学习。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
19+阅读 · 2021年5月30日
【CVPR2021】GAN人脸预训练模型
专知会员服务
23+阅读 · 2021年4月10日
【ICLR2021】神经元注意力蒸馏消除DNN中的后门触发器
专知会员服务
13+阅读 · 2021年1月31日
专知会员服务
25+阅读 · 2021年1月21日
专知会员服务
39+阅读 · 2020年12月20日
[NeurIPS 2020]对图神经网络更实际的对抗式攻击
专知会员服务
8+阅读 · 2020年11月1日
【ACM MM2020】对偶注意力GAN语义图像合成
专知会员服务
35+阅读 · 2020年9月2日
【综述】基于图的对抗式攻击和防御,附22页论文下载
专知会员服务
68+阅读 · 2020年3月5日
对抗攻击之利用水印生成对抗样本
计算机视觉life
10+阅读 · 2020年9月27日
联邦学习安全与隐私保护研究综述
专知
12+阅读 · 2020年8月7日
CVPR 2019 | 图像压缩重建也能抵御对抗样本
计算机视觉life
3+阅读 · 2019年4月26日
基于GAN的极限图像压缩框架
论智
11+阅读 · 2018年4月15日
手把手教你使用TensorFlow生成对抗样本 | 附源码
全球人工智能
11+阅读 · 2017年10月13日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
8+阅读 · 2018年11月27日
VIP会员
相关VIP内容
专知会员服务
19+阅读 · 2021年5月30日
【CVPR2021】GAN人脸预训练模型
专知会员服务
23+阅读 · 2021年4月10日
【ICLR2021】神经元注意力蒸馏消除DNN中的后门触发器
专知会员服务
13+阅读 · 2021年1月31日
专知会员服务
25+阅读 · 2021年1月21日
专知会员服务
39+阅读 · 2020年12月20日
[NeurIPS 2020]对图神经网络更实际的对抗式攻击
专知会员服务
8+阅读 · 2020年11月1日
【ACM MM2020】对偶注意力GAN语义图像合成
专知会员服务
35+阅读 · 2020年9月2日
【综述】基于图的对抗式攻击和防御,附22页论文下载
专知会员服务
68+阅读 · 2020年3月5日
相关资讯
微信扫码咨询专知VIP会员