点击上方“计算机视觉life”,选择“星标”
快速获得最新干货
本文转自我爱计算机视觉
论文标题:Adv-watermark: A Novel Watermark Perturbation for Adversarial Examples
论文链接:https://arxiv.org/pdf/2008.01919.pdf
对抗样本生成的方法有很多,但它们都是在原图像上添加对抗扰动。本文提出的生成对抗样本的的方法很有趣,它是利用水印的不可察觉性,在水印上做文章从而生成对抗样本,即在干净图像中添加有意义的水印也可以攻击深度神经网络模型。如下图所示是分别是字母水印对抗样本和logo水印的对抗样本。
本文的贡献可以归结如下三点:
作者提出了一种新的对抗样本算法Adv-watermark。水印同时具有水印特性(版权保护)和对抗样本的功能(导致训练好的模型误分类),需要注意的一点在于除了水印区域并没有其它的对抗扰动。
作者提出一种基于Adv-watermark的优化算法论文称为BHE。该优化方法采用基于种群的全局搜索策略方式生成对抗性样本。
实验结果显示,当水印大小为宿主图像大小的4/9(个人感觉扰动的像素过多,有点违背对抗样本的定义)时,它可以获得97%以上的攻击成功率。水印大小是宿主图像大小的1/16,也可以达到65%左右的攻击成功率。
论文中使用除了R,G,B以外还有alpha共四个混合通道来生成对抗水印, 通道是指背景图像中前景区域的透明度。论文中用 表示alpha通道的值, 表示尺寸为 的宿主图像(称为宿主图片很准确即为无对抗扰动的图片), 表示尺寸为 的水印图像, 表示生成的图像,当 , 时,其生成对抗水印公式为:
当 , 时, 计算公式为:
该问题涉及两组参数,第一组参数是水印在宿主图像中的位置 ;第二组参数是水印的透明度 。在宿主图像中嵌入可看作是一个实际扰动的对抗性水印,可以对局部进行修改主机映像的信息。对抗性水印扰动允许干净图像成为对抗样本。
对抗水印在不影响图像视觉效果的前提下,干扰决定图像分类的重要局部区域,攻击训练良好的分类模型。如下图所示为梯度加权类激活映射生成的热力图,可以清楚地看到Resnet101将输入图像预测为相应的正确类。
将对抗水印嵌入到图像中,可以改变生成的热图上概率分布。其中图中的第一行是原始图像(通过Resnet101正确分类)及其对应的热力图,下排是带有可见水印的对抗性图像及其对应的热图。
论文中提出了一种新的优化算法为BHE。该方法是一种启发式随机搜索算法,可用于求解多元函数的全局最小值。如下图所示,BHE包括四部分,本文接下来会依次展开说明。
BHE是一种基于群体进化的优化算法,个人感觉BHE这就是一种普通的粒子群算法,适合求解非凸函数的最优解或者是局部最优解。每个解决方案都是一个群体的个体。其中 、 和 元素被认为是其基因。
设 表示第 代人口中的第 个个体,并且 表示 的第 个基因。所以会有如下公式:
在该公式中, 为初始群体中第 个个体的第 个基因, 为第 个基因的最小值, 为第 基因的最大值。
Basin Hopping是一种随机优化算法。在每次迭代过程中,BH生成一些随机扰动的新坐标,然后找到局部极小值,最后根据最小函数值接受或拒绝新坐标,具体的计算公式如下所示:
目前还未发现该文有开源代码。
从0到1学习SLAM,戳↓
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
投稿、合作也欢迎联系:simiter@126.com
长按关注计算机视觉life