Textures contain a wealth of image information and are widely used in various fields such as computer graphics and computer vision. With the development of machine learning, the texture synthesis and generation have been greatly improved. As a very common element in everyday life, wallpapers contain a wealth of texture information, making it difficult to annotate with a simple single label. Moreover, wallpaper designers spend significant time to create different styles of wallpaper. For this purpose, this paper proposes to describe wallpaper texture images by using multi-label semantics. Based on these labels and generative adversarial networks, we present a framework for perception driven wallpaper texture generation and style transfer. In this framework, a perceptual model is trained to recognize whether the wallpapers produced by the generator network are sufficiently realistic and have the attribute designated by given perceptual description; these multi-label semantic attributes are treated as condition variables to generate wallpaper images. The generated wallpaper images can be converted to those with well-known artist styles using CycleGAN. Finally, using the aesthetic evaluation method, the generated wallpaper images are quantitatively measured. The experimental results demonstrate that the proposed method can generate wallpaper textures conforming to human aesthetics and have artistic characteristics.
翻译:在计算机图形和计算机视觉等不同领域广泛使用大量图像信息。 随着机器学习的发展, 纹理合成和生成已经大大改进。 作为日常生活中非常常见的一个要素, 壁纸包含大量质素信息, 使得很难用简单的单一标签进行注释。 此外, 壁纸设计师花费大量时间来创建不同的壁纸样式。 为此, 本文建议使用多标签语义来描述壁纸纹理图像。 根据这些标签和基因对抗网络, 我们提出了一个由感知驱动的壁纸质素生成和风格转换框架。 在这个框架中, 一种感知模型被训练为确认由发电机网络制作的壁纸是否足够现实, 并具有由感知描述所指定的属性; 这些多标签语义属性被当作生成壁纸图像的条件变量。 生成的壁纸图像可以转换为使用CyelGAN 的知名艺术家风格。 最后, 使用审美评估方法, 生成的壁纸图像可以量化地测量。 实验性墙面图的特征可以用来测量。