个性化学习推荐是智能学习的一个研究领域,其目标是在学习平台上给特定学习者提供有效学习资源,从而提升学习积极性与学习效果。虽然现有的推荐方法已被广泛用于教学场景,但教学活动自身的科学规律,使个性化学习推荐在个性化参数设置、推荐目标设定、评价标准设计等方面具有一定的特殊性。针对上述问题,在调研大量文献的基础上对近年来个性化学习推荐的研究进行了综述。从学习推荐通用框架、学习者建模、学习推荐对象建模、学习推荐算法、学习推荐评价五方面对个性化学习推荐的相关研究进行了系统的梳理和解读。首先提出了学习推荐系统的通用框架,其次介绍了学习者建模的思路和方法,接着讨论了学习推荐对象建模的思路和方法,然后归纳了学习推荐的算法与模型,接下来总结了学习推荐评价的设计与方法。并对这五方面现有研究的主要思想、实施方案、优势及不足进行了分析。最后还展望了个性化学习推荐未来的发展方向,为智能学习的进一步深入研究奠定了基础。