项目名称: 深度属性特征学习及其应用研究

项目编号: No.61473256

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 自动化技术、计算机技术

项目作者: 王东辉

作者单位: 浙江大学

项目金额: 80万元

中文摘要: 深度属性特征学习方法是一个崭新的研究方向,其主要目标是研究从低层多模态特征到高层属性特征的统一的深度学习架构,提出创新性的方法、模型和求解策略,并在具有抽象语义属性的艺术品检索问题上实现探索性示范应用。具体研究内容包括分析和评估单模态深度学习方法的性能特点,研究优化的单模态深度学习模型,提出具有更高语义表达的单模态特征深度学习方法;从多模态特征融合的角度,研究有效的深度学习架构和求解策略,为进一步的深度属性特征学习打下基础;通过对属性特征的层次分解,构建多模态特征到属性特征映射的深度学习架构及求解方法,实现更有效的属性预测和语义注解;通过在典型属性数据集和特定属性数据集上的应用研究,评估提出方法在典型应用任务中的具体性能指标。深度属性特征学习方法的研究成果不仅对机器学习新方法的研究具有重要的促进作用,而且能够为大规模特征学习、语义标注与内容理解、跨模态语义检索等诸多问题提供新的求解思路。

中文关键词: 特征表达;属性特征;深度学习;特征提取;深度架构

英文摘要: Deep attribute feature learning (DAFL) is a new research direction, and its main objective is to study a unified deep architecture for learning features covered from low-level to high-level. We will propose some innovative deep learning methods, models and the corresponding solutions in this project. And we will apply proposed methods to solve the problem of art retrieval by using abstract semantic attributes. The detailed content includes the analysis and estimation of single-modal deep learning method, the optimization of single-modal deep learning method and the study of learning higher semantic features. From the viewpoint of multi-modal feature fusion, we will study more valid deep learning architectures and optimization algorithms. By decomposing the attributes into a hierarchical structure, we will construct a map from multi-modal feature to attribute feature. We will test our proposed methods on several attribute data sets and give experimental results. Our work on deep attribute feature learning will not only promote the research on machine learning, but also provide new inspiration for many problems, such as large-scale feature learning, semantic annotation and content understanding, cross-media semantic retrieval, and so on.

英文关键词: feature representation;attribute featuer;deep learning;feature extraction;deep architecture

成为VIP会员查看完整内容
6

相关内容

专知会员服务
23+阅读 · 2021年9月22日
专知会员服务
54+阅读 · 2021年9月3日
专知会员服务
47+阅读 · 2021年4月15日
专知会员服务
25+阅读 · 2020年12月17日
【博士论文】辨识性特征学习及在细粒度分析中的应用
专知会员服务
29+阅读 · 2020年12月10日
【南京大学冯雯博士论文】新型深度学习模型的研究
专知会员服务
67+阅读 · 2020年12月5日
多模态视觉语言表征学习研究综述
专知会员服务
191+阅读 · 2020年12月3日
专知会员服务
37+阅读 · 2020年8月19日
【新书】自然语言处理表示学习技术,349页pdf,清华大学
专知会员服务
173+阅读 · 2020年7月11日
基于深度学习的多标签生成研究进展
专知会员服务
142+阅读 · 2020年4月25日
【TPAMI2022】关联关系驱动的多模态分类
专知
3+阅读 · 2022年3月22日
「基于GNN的图分类研究」最新2022综述
图与推荐
7+阅读 · 2022年2月14日
杨宇鸿:腾讯多模态内容理解技术及应用
专知
3+阅读 · 2022年1月27日
多模态视觉语言表征学习研究综述
专知
27+阅读 · 2020年12月3日
技术动态 | 跨句多元关系抽取
开放知识图谱
50+阅读 · 2019年10月24日
SemanticAdv:基于语义属性的对抗样本生成方法
机器之心
14+阅读 · 2019年7月12日
换个角度看GAN:另一种损失函数
机器之心
16+阅读 · 2019年1月1日
关系推理:基于表示学习和语义要素
计算机研究与发展
18+阅读 · 2017年8月22日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年5月3日
Arxiv
11+阅读 · 2018年3月23日
小贴士
相关VIP内容
专知会员服务
23+阅读 · 2021年9月22日
专知会员服务
54+阅读 · 2021年9月3日
专知会员服务
47+阅读 · 2021年4月15日
专知会员服务
25+阅读 · 2020年12月17日
【博士论文】辨识性特征学习及在细粒度分析中的应用
专知会员服务
29+阅读 · 2020年12月10日
【南京大学冯雯博士论文】新型深度学习模型的研究
专知会员服务
67+阅读 · 2020年12月5日
多模态视觉语言表征学习研究综述
专知会员服务
191+阅读 · 2020年12月3日
专知会员服务
37+阅读 · 2020年8月19日
【新书】自然语言处理表示学习技术,349页pdf,清华大学
专知会员服务
173+阅读 · 2020年7月11日
基于深度学习的多标签生成研究进展
专知会员服务
142+阅读 · 2020年4月25日
相关资讯
【TPAMI2022】关联关系驱动的多模态分类
专知
3+阅读 · 2022年3月22日
「基于GNN的图分类研究」最新2022综述
图与推荐
7+阅读 · 2022年2月14日
杨宇鸿:腾讯多模态内容理解技术及应用
专知
3+阅读 · 2022年1月27日
多模态视觉语言表征学习研究综述
专知
27+阅读 · 2020年12月3日
技术动态 | 跨句多元关系抽取
开放知识图谱
50+阅读 · 2019年10月24日
SemanticAdv:基于语义属性的对抗样本生成方法
机器之心
14+阅读 · 2019年7月12日
换个角度看GAN:另一种损失函数
机器之心
16+阅读 · 2019年1月1日
关系推理:基于表示学习和语义要素
计算机研究与发展
18+阅读 · 2017年8月22日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员