在机器学习中,分布外(Out-of-Distribution, OOD)泛化是一个快速发展的研究领域。其主要目标是增强机器学习模型在面对新的、未见过的、甚至是具有潜在对抗性的数据时的适应性和韧性,这些数据与模型的原始训练数据集存在显著差异。本文通过预训练的大型语言模型(LLMs)研究时间序列的OOD泛化。我们首先提出了一个用于时间序列OOD泛化的新颖三层学习框架,称为TTSO(Tri-level learning framework for Time Series OOD generalization),该框架同时考虑样本级和组级的不确定性。该框架为构建和分析OOD泛化问题提供了一种新的理论视角。此外,我们还进行了理论分析,以证明该方法的合理性。随后,我们开发了一种分层定位算法,以适应这一三层优化问题,并从理论上证明了所提出算法的收敛性保证。我们的分析还揭示了获得ϵ-驻点的迭代复杂度被限制在O(1/ϵ²)之内。基于真实世界数据集的大量实验已被开展,以阐明所提方法的有效性。

成为VIP会员查看完整内容
17

相关内容

【CVPR2024】医学基础模型的低秩知识分解
专知会员服务
31+阅读 · 4月29日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
20+阅读 · 2023年5月10日
【AAAI2023】MHCCL:多变量时间序列的掩蔽层次聚类对比学习
【AAAI2022】基于变分信息瓶颈的图结构学习
专知会员服务
19+阅读 · 2021年12月18日
【WSDM2021】基于演化状态图的时间序列事件预测
专知会员服务
52+阅读 · 2020年12月1日
[CVPR 2021] 序列到序列对比学习的文本识别
专知
10+阅读 · 2021年4月14日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【CVPR 2020 Oral】小样本类增量学习
专知
16+阅读 · 2020年6月26日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
20+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
Arxiv
155+阅读 · 2023年4月20日
A Survey of Large Language Models
Arxiv
395+阅读 · 2023年3月31日
Arxiv
66+阅读 · 2023年3月26日
Arxiv
19+阅读 · 2023年3月17日
VIP会员
相关VIP内容
相关资讯
相关基金
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
20+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
微信扫码咨询专知VIP会员