Diffusion models have become a new SOTA generative modeling method in various fields, for which there are multiple survey works that provide an overall survey. With the number of articles on diffusion models increasing exponentially in the past few years, there is an increasing need for surveys of diffusion models on specific fields. In this work, we are committed to conducting a survey on the graph diffusion models. Even though our focus is to cover the progress of diffusion models in graphs, we first briefly summarize how other generative modeling methods are used for graphs. After that, we introduce the mechanism of diffusion models in various forms, which facilitates the discussion on the graph diffusion models. The applications of graph diffusion models mainly fall into the category of AI-generated content (AIGC) in science, for which we mainly focus on how graph diffusion models are utilized for generating molecules and proteins but also cover other cases, including materials design. Moreover, we discuss the issue of evaluating diffusion models in the graph domain and the existing challenges.
翻译:翻译摘要:
扩散模型已成为多个领域中最先进的生成建模方法之一,已有多篇综述涵盖了其整体概述。随着过去几年扩散模型文章数量的指数增长,需要对其特定领域进行调查。在本论文中,我们致力于对图扩散模型进行调查。尽管我们的重点是涵盖图中扩散模型的进展,但我们首先简要总结其他生成建模方法如何应用于图形。之后,我们介绍了各种形式的图扩散模型机制,从而方便对图扩散模型进行讨论。图扩散模型的应用主要归为科学中AI生成的内容(AIGC)类别,我们主要关注图扩散模型如何用于生成分子和蛋白质,但还涵盖了其他领域,包括材料设计。此外,我们还讨论了在图域中评估扩散模型的问题和现有挑战。