解释作用于时间序列数据的深度学习模型在许多需要从时间序列信号中获取可解释和透明洞察的应用中至关重要。在这项工作中,我们从信息论的角度研究了这个问题,并表明现有的大多数可解释性度量可能会遭遇琐碎解和分布偏移问题。为了解决这些问题,我们引入了一个简单而实用的目标函数用于时间序列可解释学习。该目标函数的设计基于信息瓶颈(IB)原理,并修改了IB目标函数以避免琐碎解和分布偏移问题。 我们进一步提出了TIMEX++,一个新颖的解释框架,利用参数化网络生成嵌入解释的实例,这些实例既是分布内的,又保留标签。我们在合成和真实世界的数据集上评估了TIMEX++,并将其性能与领先的基线方法进行了比较,通过实际案例研究验证了其在真实环境应用中的有效性。定量和定性评估表明,TIMEX++在所有数据集上均优于基线方法,在时间序列数据的解释质量上有显著提升。源代码可在https://github.com/zichuan-liu/TimeXplusplus找到。

成为VIP会员查看完整内容
16

相关内容

【CVPR2024】医学基础模型的低秩知识分解
专知会员服务
31+阅读 · 4月29日
【AAAI2023】MHCCL:多变量时间序列的掩蔽层次聚类对比学习
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
13+阅读 · 2022年5月4日
【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
21+阅读 · 2021年4月11日
专知会员服务
36+阅读 · 2021年3月29日
【CVPR2020-Oral】用于深度网络的任务感知超参数
专知会员服务
25+阅读 · 2020年5月25日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【MIT】硬负样本的对比学习
专知
13+阅读 · 2020年10月15日
【CVPR 2020 Oral】小样本类增量学习
专知
16+阅读 · 2020年6月26日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
15+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
37+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
A Survey of Large Language Models
Arxiv
398+阅读 · 2023年3月31日
Arxiv
66+阅读 · 2023年3月26日
Arxiv
137+阅读 · 2023年3月24日
Arxiv
19+阅读 · 2023年3月17日
VIP会员
相关VIP内容
【CVPR2024】医学基础模型的低秩知识分解
专知会员服务
31+阅读 · 4月29日
【AAAI2023】MHCCL:多变量时间序列的掩蔽层次聚类对比学习
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
13+阅读 · 2022年5月4日
【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
21+阅读 · 2021年4月11日
专知会员服务
36+阅读 · 2021年3月29日
【CVPR2020-Oral】用于深度网络的任务感知超参数
专知会员服务
25+阅读 · 2020年5月25日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【MIT】硬负样本的对比学习
专知
13+阅读 · 2020年10月15日
【CVPR 2020 Oral】小样本类增量学习
专知
16+阅读 · 2020年6月26日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
15+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
37+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
微信扫码咨询专知VIP会员