近年来,机器学习取得了显著进展,提供了一些新功能,比如创建复杂的、可计算的文本和图像表示。这些功能催生了新产品,如基于图像内容的图像搜索、多种语言之间的自动翻译,甚至是真实图像和声音的合成。同时,机器学习已经在企业中被广泛采用,用于经典的用例(例如,预测客户流失、贷款违约和制造设备故障)。

在机器学习取得成功的地方,它是非常成功的。

在许多情况下,这种成功可以归因于对大量训练数据的监督学习(结合大量计算)。总的来说,有监督的学习系统擅长于一项任务:预测。当目标是预测一个结果,并且我们有很多这个结果的例子,以及与它相关的特征时,我们可能会转向监督学习。

随着机器学习的普及,它在业务流程中的影响范围已经从狭窄的预测扩展到决策制定。机器学习系统的结果经常被用来设定信用限额,预测制造设备故障,以及管理我们的各种新闻推送。当个人和企业试图从这些复杂和非线性系统提供的信息中学习时,更多(和更好)的可解释性方法已经被开发出来,这是非常重要的。

然而,仅仅基于预测的推理有一些基本的限制。例如,如果银行提高客户的信用额度会发生什么?这些问题不能用建立在先前观察到的数据上的相关模型来回答,因为它们涉及到客户选择的可能变化,作为对信用限额变化的反应。在很多情况下,我们的决策过程的结果是一种干预——一种改变世界的行动。正如我们将在本报告中展示的,纯粹相关的预测系统不具备在这种干预下进行推理的能力,因此容易产生偏差。对于干预下的数据决策,我们需要因果关系。

即使对于纯粹的预测系统(这是监督学习的强项),应用一些因果思维也会带来好处。根据因果关系的定义,它们是不变的,这意味着它们在不同的情况和环境中都是正确的。对于机器学习系统来说,这是一个非常理想的特性,在机器学习系统中,我们经常根据我们在训练中没有看到的数据进行预测;我们需要这些系统具有适应性和健壮性。

因果推理和机器学习的交集是一个迅速扩展的研究领域。它已经产生了可供主流采用的功能——这些功能可以帮助我们构建更健壮、可靠和公平的机器学习系统。

本书介绍了因果推理,因为它涉及很多数据科学和机器学习工作。我们引入因果图,着重于消除理解的概念障碍。然后我们利用这个理解来探索关于不变预测的最新想法,它给高维问题带来了因果图的一些好处。通过附带的原型,我们展示了即使是经典的机器学习问题,如图像分类,也可以从因果推理工具中受益。

成为VIP会员查看完整内容
0
150

相关内容

近年来,机器学习发展迅速,尤其是深度学习在图像、声音、自然语言处理等领域取得卓越成效.机器学习算法的表示能力大幅度提高,但是伴随着模型复杂度的增加,机器学习算法的可解释性越差,至今,机器学习的可解释性依旧是个难题.通过算法训练出的模型被看作成黑盒子,严重阻碍了机器学习在某些特定领域的使用,譬如医学、金融等领域. 目前针对机器学习的可解释性综述性的工作极少,因此,将现有的可解释方法进行归类描述和分析比较,一方面对可解释性的定义、度量进行阐述,另一方面针对可解释对象的不同,从模型的解释、预测结果的解释和模仿者模型的解释3个方面,总结和分析各种机器学习可解释技术,并讨论了机器学习可解释方法面临的挑战和机遇以及未来的可能发展方向.

成为VIP会员查看完整内容
0
40

机器学习在许多部署的决策系统中发挥着作用,其方式通常是人类利益相关者难以理解或不可能理解的。以一种人类可以理解的方式解释机器学习模型的输入和输出之间的关系,对于开发可信的基于机器学习的系统是至关重要的。一个新兴的研究机构试图定义机器学习的目标和解释方法。在本文中,我们试图对反事实解释的研究进行回顾和分类,这是一种特殊类型的解释,它提供了在模型输入以特定方式改变时可能发生的事情之间的联系。机器学习中反事实可解释性的现代方法与许多国家的既定法律原则相联系,这使它们吸引了金融和医疗等高影响力领域的实地系统。因此,我们设计了一个具有反事实解释算法理想性质的准则,并对目前提出的所有反事实解释算法进行了综合评价。我们的标题便于比较和理解不同方法的优缺点,并介绍了该领域的主要研究主题。我们也指出了在反事实解释空间的差距和讨论了有前途的研究方向。

机器学习作为一种在许多领域实现大规模自动化的有效工具,正日益被人们所接受。算法能够从数据中学习,以发现模式并支持决策,而不是手工设计的规则。这些决定可以并确实直接或间接地影响人类;备受关注的案例包括信贷贷款[99]、人才资源[97]、假释[102]和医疗[46]的申请。在机器学习社区中,新生的公平、责任、透明度和伦理(命运)已经成为一个多学科的研究人员和行业从业人员的团体,他们感兴趣的是开发技术来检测机器学习模型中的偏见,开发算法来抵消这种偏见,为机器决策生成人类可理解的解释,让组织为不公平的决策负责,等等。

对于机器决策,人类可以理解的解释在几个方面都有优势。例如,关注一个申请贷款的申请人的用例,好处包括:

  • 对于生活受到该决定影响的申请人来说,解释是有益的。例如,它帮助申请人理解他们的哪些因素是做出决定的关键因素。

  • 此外,如果申请人觉得受到了不公平待遇,例如,如果一个人的种族在决定结果时至关重要,它还可以帮助申请人对决定提出质疑。这对于组织检查其算法中的偏见也很有用。

  • 在某些情况下,解释为申请人提供了反馈,他们可以根据这些反馈采取行动,在未来的时间内获得预期的结果。

  • 解释可以帮助机器学习模型开发人员识别、检测和修复错误和其他性能问题。

  • 解释有助于遵守与机器生产决策相关的法律,如GDPR[10]。

机器学习中的可解释性大体上是指使用固有的可解释的透明模型或为不透明模型生成事后解释。前者的例子包括线性/逻辑回归、决策树、规则集等。后者的例子包括随机森林、支持向量机(SVMs)和神经网络。

事后解释方法既可以是模型特定的,也可以是模型不可知的。特征重要性解释和模型简化是两种广泛的特定于模型的方法。与模型无关的方法可以分为视觉解释、局部解释、特性重要性和模型简化。

特征重要性(Feature importance)是指对模型的整体精度或某个特定决策最有影响的特征,例如SHAP[80]、QII[27]。模型简化找到了一个可解释的模型,该模型紧致地模仿了不透明模型。依存图是一种常用的直观解释,如部分依存图[51]、累积局部效应图[14]、个体条件期望图[53]。他们将模型预测的变化绘制成一个特征,或者多个特征被改变。局部解释不同于其他解释方法,因为它们只解释一个预测。局部解释可以进一步分为近似解释和基于实例的解释。近似方法在模型预测需要解释的数据点附近抽取新的数据点(以下称为explainee数据点),然后拟合线性模型(如LIME[92])或从中提取规则集(如锚[93])。基于实例的方法寻求在被解释数据点附近找到数据点。它们要么以与被解释数据点具有相同预测的数据点的形式提供解释,要么以预测与被解释数据点不同的数据点的形式提供解释。请注意,后一种数据点仍然接近于被解释的数据点,被称为“反事实解释”。

回想一下申请贷款的申请人的用例。对于贷款请求被拒绝的个人,反事实的解释为他们提供反馈,帮助他们改变自己的特征,以过渡到决策边界的理想一面,即获得贷款。这样的反馈被称为可执行的。与其他几种解释技术不同,反事实解释不能明确回答决策中的“为什么”部分;相反,他们提供建议以达到预期的结果。反事实解释也适用于黑箱模型(只有模型的预测功能是可访问的),因此不限制模型的复杂性,也不要求模型披露。它们也不一定能近似底层模型,从而产生准确的反馈。由于反事实解释具有直觉性,因此也符合法律框架的规定(见附录C)。

在这项工作中,我们收集、审查和分类了最近的39篇论文,提出了算法,以产生机器学习模型的反事实解释。这些方法大多集中在表格或基于图像的数据集上。我们在附录b中描述了我们为这项调查收集论文的方法。我们描述了这个领域最近的研究主题,并将收集的论文按照有效的反事实解释的固定需求进行分类(见表1)。

成为VIP会员查看完整内容
0
74

通过人工神经网络等获得的预测具有很高的准确性,但人类经常将这些模型视为黑盒子。对于人类来说,关于决策制定的洞察大多是不透明的。在医疗保健或金融等高度敏感领域,对决策的理解至关重要。黑盒子背后的决策要求它对人类来说更加透明、可问责和可理解。这篇综述论文提供了基本的定义,概述了可解释监督机器学习(SML)的不同原理和方法。我们进行了最先进的综述,回顾过去和最近可解释的SML方法,并根据介绍的定义对它们进行分类。最后,我们通过一个解释性的案例研究来说明原则,并讨论未来的重要方向。

https://www.zhuanzhi.ai/paper/d34a1111c1ab9ea312570ae8e011903c

目前人工智能(AI)模型的准确性是显著的,但准确性并不是最重要的唯一方面。对于高风险的领域,对模型和输出的详细理解也很重要。底层的机器学习和深度学习算法构建的复杂模型对人类来说是不透明的。Holzinger等人(2019b)指出,医学领域是人工智能面临的最大挑战之一。对于像医疗这样的领域,深刻理解人工智能的应用是至关重要的,对可解释人工智能(XAI)的需求是显而易见的。

可解释性在许多领域很重要,但不是在所有领域。我们已经提到了可解释性很重要的领域,例如卫生保健。在其他领域,比如飞机碰撞避免,算法多年来一直在没有人工交互的情况下运行,也没有给出解释。当存在某种程度的不完整时,需要可解释性。可以肯定的是,不完整性不能与不确定性混淆。不确定性指的是可以通过数学模型形式化和处理的东西。另一方面,不完全性意味着关于问题的某些东西不能充分编码到模型中(Doshi-Velez和Kim(2017))。例如,刑事风险评估工具应该是公正的,它也应该符合人类的公平和道德观念。但伦理学是一个很宽泛的领域,它是主观的,很难正式化。相比之下,飞机避免碰撞是一个很容易理解的问题,也可以被精确地描述。如果一个系统能够很好地避免碰撞,就不用再担心它了。不需要解释。

本文详细介绍了可解释SML的定义,并为该领域中各种方法的分类奠定了基础。我们区分了各种问题定义,将可解释监督学习领域分为可解释模型、代理模型拟合和解释生成。可解释模型的定义关注于自然实现的或通过使用设计原则强制实现的整个模型理解。代理模型拟合方法近似基于黑盒的局部或全局可解释模型。解释生成过程直接产生一种解释,区分局部解释和全局解释。

综上所述,本文的贡献如下:

  • 对五种不同的解释方法进行形式化,并对整个解释链的相应文献(分类和回归)进行回顾。
  • 可解释性的原因,审查重要领域和可解释性的评估
  • 这一章仅仅强调了围绕数据和可解释性主题的各个方面,比如数据质量和本体
  • 支持理解不同解释方法的连续用例
  • 回顾重要的未来方向和讨论

成为VIP会员查看完整内容
0
74

人工智能(AI)为改善私人和公共生活提供了很多机会,以自动化的方式在大型数据中发现模式和结构是数据科学的核心组件,目前驱动着计算生物学、法律和金融等不同领域的应用发展。然而,这种高度积极的影响也伴随着重大的挑战:我们如何理解这些系统所建议的决策,以便我们能够信任它们?在这个报告中,我们特别关注数据驱动的方法——特别是机器学习(ML)和模式识别模型——以便调查和提取结果和文献观察。通过注意到ML模型越来越多地部署在广泛的业务中,可以特别理解本报告的目的。然而,随着方法的日益普及和复杂性,业务涉众对模型的缺陷、特定数据的偏差等越来越关注。类似地,数据科学从业者通常不知道来自学术文献的方法,或者可能很难理解不同方法之间的差异,所以最终使用行业标准,比如SHAP。在这里,我们进行了一项调查,以帮助行业从业者(以及更广泛的数据科学家)更好地理解可解释机器学习领域,并应用正确的工具。我们后面的章节将围绕一位公认的数据科学家展开叙述,并讨论她如何通过提出正确的问题来解释模型。

https://arxiv.org/abs/2009.11698

成为VIP会员查看完整内容
0
79

摘要:这项工作考虑了这样一个问题: 获取大量数据的便利程度如何影响我们学习因果效应和关系的能力。在大数据时代,学习因果关系与传统因果关系有哪些不同或相同之处?为了回答这个问题,这项综述提供了一个在因果关系和机器学习之间联系的全面和结构化的回顾。

https://www.zhuanzhi.ai/paper/6ad7902913e98bd48540a5596b978edc

因果性是结果与引起结果的原因之间的一种一般性关系。它很难定义,而且我们通常只凭直觉知道原因和结果。因为下雨,街道是湿的。因为这个学生不学习,所以他考试考得很差。因为烤箱是热的,奶酪在披萨上融化了。当用数据学习因果关系时,我们需要意识到统计关联和因果之间的区别。例如,当天气炎热时,一家冰淇淋店的老板可能会注意到高昂的电费和较高的销售额。因此,她会观察到电费和销售数字之间有很强的联系,但电费并不是导致高销售额的原因——让商店的灯彻夜开着不会对销售产生影响。在这种情况下,外部温度是高电费和高销售额的共同原因,我们说它是一个混乱的因果关系。

学习因果关系的能力被认为是人类水平智能的重要组成部分,可以作为AI的基础(Pearl, 2018)。从历史上看,学习因果关系已经在包括教育在内的许多高影响领域被研究过(LaLonde, 1986;Dehejia和Wahba, 1999年;Heckerman et al ., 2006;希尔,2011),医学科学(马尼和库珀,2000;经济学(Imbens, 2004)、流行病学(Hernan et al., 2000;Robins等人,2000年;、气象学(Ebert-Uphoff和Deng, 2012)和环境卫生(Li et al., 2014)。受限于数据量,坚实的先验因果知识是学习因果关系所必需的。研究人员对通过精心设计的实验收集的数据进行研究,坚实的先验因果知识至关重要(Heckerman et al., 2006)。以随机对照试验的原型为例(Cook et al., 2002),为了研究一种药物的疗效,患者将被随机分配服用或不服用该药物,这将保证平均而言,治疗组和未治疗组(对照组)在所有相关方面是等同的,排除任何其他因素的影响。然后,药物对某些健康结果的影响——比如,偏头痛的持续时间——可以通过比较两组的平均结果来衡量。

这个综述的目的是考虑在现在的大数据时代学习因果关系的新可能性和挑战,这里指的是海量数据集的可用性。举个例子,考虑到无法测量的混杂因素的可能性——可能会被减轻,因为可以测量更多的特征。因此,一方面,研究人员有可能在大数据的帮助下回答有趣的因果问题。例如,Yelp的正面评论是促使顾客去餐馆,还是仅仅反映了受欢迎程度而没有影响?这个因果问题可以通过Yelp维护的庞大数据库中的数据来解决。另一方面,用大数据来回答因果问题,会带来一些独特的新问题。例如,尽管公共数据库或通过web爬行收集的数据或应用程序编程接口(api)是空前巨大的,我们有很少的直觉对什么类型的偏差数据集可以遭受——数据更丰富,也更神秘,因此,负责任地更难模型。与此同时,大数据给其他学习任务(如预测)带来的基本统计困难,使得因果调查更具挑战性。也许这方面最显著的例子是现代数据的高维性(Li et al., 2017a),比如文本数据(Imai et al., 2013)。

成为VIP会员查看完整内容
0
98

在复杂的以人为中心的系统中,每天的决策都具有决策相关信息不完全的特点。现有决策理论的主要问题是,它们没有能力处理概率和事件不精确的情况。在这本书中,我们描述了一个新的理论的决策与不完全的信息。其目的是将决策分析和经济行为的基础从领域二价逻辑转向领域模糊逻辑和Z约束,从行为决策的外部建模转向组合状态的框架。

这本书将有助于在模糊逻辑,决策科学,人工智能,数学经济学,和计算经济学的专业人员,学者,经理和研究生。

读者:专业人士,学者,管理者和研究生在模糊逻辑,决策科学,人工智能,数学经济学,和计算经济学。

成为VIP会员查看完整内容
0
171

近年来,神经网络已成为分析复杂和抽象数据模型的有力工具。然而,它们的引入本质上增加了我们的不确定性,即分析的哪些特征是与模型相关的,哪些是由神经网络造成的。这意味着,神经网络的预测存在偏差,无法与数据的创建和观察的真实本质区分开来。为了尝试解决这些问题,我们讨论了贝叶斯神经网络:可以描述由网络引起的不确定性的神经网络。特别地,我们提出了贝叶斯统计框架,它允许我们根据观察某些数据的根深蒂固的随机性和我们缺乏关于如何创建和观察数据的知识的不确定性来对不确定性进行分类。在介绍这些技术时,我们展示了如何从原理上获得神经网络预测中的误差,并提供了描述这些误差的两种常用方法。我们还将描述这两种方法在实际应用时如何存在重大缺陷,并强调在使用神经网络时需要其他统计技术来真正进行推理。

成为VIP会员查看完整内容
0
109

本备忘单是机器学习手册的浓缩版,包含了许多关于机器学习的经典方程和图表,旨在帮助您快速回忆起机器学习中的知识和思想。

这个备忘单有两个显著的优点:

  1. 清晰的符号。数学公式使用了许多令人困惑的符号。例如,X可以是一个集合,一个随机变量,或者一个矩阵。这是非常混乱的,使读者很难理解数学公式的意义。本备忘单试图规范符号的使用,所有符号都有明确的预先定义,请参见小节。

  2. 更少的思维跳跃。在许多机器学习的书籍中,作者省略了数学证明过程中的一些中间步骤,这可能会节省一些空间,但是会给读者理解这个公式带来困难,读者会在中间迷失。

成为VIP会员查看完整内容
0
200

【导读】分布式机器学习Distributed Machine Learning是学术界和工业界关注的焦点。最近来自荷兰的几位研究人员撰写了关于分布式机器学习的综述,共33页pdf和172篇文献,概述了分布式机器学习相对于传统(集中式)机器学习的挑战和机遇,讨论了用于分布式机器学习的技术,并对可用的系统进行了概述,从而全面概述了该领域的最新进展

​论文地址: https://www.zhuanzhi.ai/paper/161029da3ed8b6027a1199c026df7d07

摘要 在过去的十年里,对人工智能的需求显著增长,而机器学习技术的进步和利用硬件加速的能力推动了这种增长。然而,为了提高预测的质量并使机器学习解决方案在更复杂的应用中可行,需要大量的训练数据。虽然小的机器学习模型可以用少量的数据进行训练,但训练大模型(如神经网络)的输入随着参数的数量呈指数增长。由于处理训练数据的需求已经超过了计算机器计算能力的增长,因此需要将机器学习的工作负载分布到多台机器上,并将集中式的学习任务转换为分布式系统。这些分布式系统提出了新的挑战,首先是训练过程的有效并行化和一致模型的创建。本文概述了分布式机器学习相对于传统(集中式)机器学习的挑战和机遇,讨论了用于分布式机器学习的技术,并对可用的系统进行了概述,从而全面概述了该领域的最新进展。

1. 引言

近年来,新技术的快速发展导致了数据采集的空前增长。机器学习(ML)算法正越来越多地用于分析数据集和构建决策系统,因为问题的复杂性,算法解决方案是不可行的。例如控制自动驾驶汽车[23],识别语音[8],或者预测消费者行为[82]。

在某些情况下,训练模型的长时间运行会引导解决方案设计者使用分布式系统来增加并行性和I/O带宽总量,因为复杂应用程序所需的训练数据很容易达到tb级的[29]。在其他情况下,当数据本身就是分布式的,或者数据太大而不能存储在一台机器上时,集中式解决方案甚至都不是一个选项。例如,大型企业对存储在不同位置的[19]的数据进行事务处理,或者对大到无法移动和集中的天文数据进行事务处理[125]。

为了使这些类型的数据集可作为机器学习问题的训练数据,必须选择和实现能够并行计算、数据分布和故障恢复能力的算法。在这一领域进行了丰富多样的研究生态系统,我们将在本文中对其进行分类和讨论。与之前关于分布式机器学习([120][124])或相关领域的调查([153][87][122][171][144])相比,我们对该问题应用了一个整体的观点,并从分布式系统的角度讨论了最先进的机器学习的实践方面。

第2节深入讨论了机器学习的系统挑战,以及如何采用高性能计算(HPC)的思想来加速和提高可扩展性。第3节描述了分布式机器学习的参考体系结构,涵盖了从算法到网络通信模式的整个堆栈,这些模式可用于在各个节点之间交换状态。第4节介绍了最广泛使用的系统和库的生态系统及其底层设计。最后,第5节讨论了分布式机器学习的主要挑战

2. 机器学习——高性能计算的挑战?

近年来,机器学习技术在越来越复杂的应用中得到了广泛应用。虽然出现了各种相互竞争的方法和算法,但所使用的数据表示在结构上惊人地相似。机器学习工作负载中的大多数计算都是关于向量、矩阵或张量的基本转换——这是线性代数中众所周知的问题。优化这些操作的需求是高性能计算社区数十年来一个非常活跃的研究领域。因此,一些来自HPC社区的技术和库(如BLAS[89]或MPI[62])已经被机器学习社区成功地采用并集成到系统中。与此同时,HPC社区已经发现机器学习是一种新兴的高价值工作负载,并开始将HPC方法应用于它们。Coates等人,[38]能够在短短三天内,在他们的商用现货高性能计算(COTS HPC)系统上训练出一个10亿个参数网络。You等人[166]在Intel的Knights Landing(一种为高性能计算应用而设计的芯片)上优化了神经网络的训练。Kurth等人[84]证明了像提取天气模式这样的深度学习问题如何在大型并行高性能计算系统上进行优化和快速扩展。Yan等人[163]利用借鉴于HPC的轻量级概要分析等技术对工作负载需求进行建模,解决了在云计算基础设施上调度深度神经网络应用程序的挑战。Li等人[91]研究了深度神经网络在加速器上运行时对硬件错误的弹性特性,加速器通常部署在主要的高性能计算系统中。

与其他大规模计算挑战一样,加速工作负载有两种基本的、互补的方法:向单个机器添加更多资源(垂直扩展或向上扩展)和向系统添加更多节点(水平扩展或向外扩展)。

3. 一个分布式机器学习的参考架构

avatar

图1 机器学习的概述。在训练阶段,利用训练数据和调整超参数对ML模型进行优化。然后利用训练后的模型对输入系统的新数据进行预测。

avatar

图2 分布式机器学习中的并行性。数据并行性在di上训练同一个模型的多个实例!模型并行性将单个模型的并行路径分布到多个节点。

机器学习算法

机器学习算法学习根据数据做出决策或预测。我们根据以下三个特征对当前的ML算法进行了分类:

反馈、在学习过程中给算法的反馈类型

目的、期望的算法最终结果

方法、给出反馈时模型演化的本质

反馈 训练算法需要反馈,这样才能逐步提高模型的质量。反馈有几种不同类型[165]:

包括 监督学习、无监督学习、半监督学习与强化学习

目的 机器学习算法可用于各种各样的目的,如对图像进行分类或预测事件的概率。它们通常用于以下任务[85]: 异常检测、分类、聚类、降维、表示学习、回归

每一个有效的ML算法都需要一种方法来迫使算法根据新的输入数据进行改进,从而提高其准确性。通过算法的学习方式,我们识别出了不同的ML方法组: 演化算法、随机梯度下降、支持向量机、感知器、神经网络、规则机器学习、主题模型、矩阵分解。

avatar

图3所示:基于分布程度的分布式机器学习拓扑

4. 分布式机器学习生态系统

avatar

图4所示。分布式机器学习生态系统。通用分布式框架和单机ML系统和库都在向分布式机器学习靠拢。云是ML的一种新的交付模型。

5 结论和当前的挑战

分布式机器学习是一个蓬勃发展的生态系统,它在体系结构、算法、性能和效率方面都有各种各样的解决方案。为了使分布式机器学习在第一时间成为可行的,必须克服一些基本的挑战,例如,建立一种机制,使数据处理并行化,同时将结果组合成一个单一的一致模型。现在有工业级系统,针对日益增长的欲望与机器学习解决更复杂的问题,分布式机器学习越来越普遍和单机解决方案例外,类似于数据处理一般发展在过去的十年。然而,对于分布式机器学习的长期成功来说,仍然存在许多挑战:性能、容错、隐私、可移植性等。

成为VIP会员查看完整内容
A Survey on Distributed Machine Learning.pdf
0
73
小贴士
相关VIP内容
专知会员服务
40+阅读 · 2020年12月18日
专知会员服务
74+阅读 · 2020年11月19日
专知会员服务
79+阅读 · 2020年10月10日
专知会员服务
171+阅读 · 2020年6月24日
专知会员服务
109+阅读 · 2020年6月3日
机器学习速查手册,135页pdf
专知会员服务
200+阅读 · 2020年3月15日
最新《分布式机器学习》论文综述最新DML进展,33页pdf
专知会员服务
73+阅读 · 2019年12月26日
相关论文
Ali Shojaie,Emily B. Fox
0+阅读 · 5月7日
S. Dzhenzher,A. Skopenkov
0+阅读 · 5月2日
Peter L. Bartlett,Andrea Montanari,Alexander Rakhlin
14+阅读 · 3月16日
Recent advances in deep learning theory
Fengxiang He,Dacheng Tao
39+阅读 · 2020年12月20日
Bernhard Schölkopf
10+阅读 · 2019年11月24日
Yi-Lin Tuan,Yun-Nung Chen,Hung-yi Lee
3+阅读 · 2019年10月1日
Joseph Y. Halpern
5+阅读 · 2019年9月30日
Information-Directed Exploration for Deep Reinforcement Learning
Nikolay Nikolov,Johannes Kirschner,Felix Berkenkamp,Andreas Krause
3+阅读 · 2018年12月18日
Stephen Bonner,Flavian Vasile
17+阅读 · 2018年8月3日
K. Lakshmanan
6+阅读 · 2018年4月24日
Top