Software developers have heavily used online question and answer platforms to seek help to solve their technical problems. However, a major problem with these technical Q&A sites is "answer hungriness" i.e., a large number of questions remain unanswered or unresolved, and users have to wait for a long time or painstakingly go through the provided answers with various levels of quality. To alleviate this time-consuming problem, we propose a novel DeepAns neural network-based approach to identify the most relevant answer among a set of answer candidates. Our approach follows a three-stage process: question boosting, label establishment, and answer recommendation. Given a post, we first generate a clarifying question as a way of question boosting. We automatically establish the positive, neutral+, neutral- and negative training samples via label establishment. When it comes to answer recommendation, we sort answer candidates by the matching scores calculated by our neural network-based model. To evaluate the performance of our proposed model, we conducted a large scale evaluation on four datasets, collected from the real world technical Q&A sites (i.e., Ask Ubuntu, Super User, Stack Overflow Python and Stack Overflow Java). Our experimental results show that our approach significantly outperforms several state-of-the-art baselines in automatic evaluation. We also conducted a user study with 50 solved/unanswered/unresolved questions. The user study results demonstrate that our approach is effective in solving the answer hungry problem by recommending the most relevant answers from historical archives.


翻译:软件开发者大量使用在线问答平台来寻求帮助解决其技术问题。然而,这些技术网站的“A”网站的一个主要问题是“回答迟钝”,即大量问题仍然没有得到解答或未解决,用户必须等待很长时间或艰苦地通过所提供的不同质量水平的答案。为了缓解这个耗时的问题,我们提议了一个新的“DeepAns神经网络”方法,以找出一组回答候选人中最相关的答案。我们的方法遵循一个三阶段的过程:问题提振、标签建立和回答建议。如果有一个职位,我们首先提出一个澄清问题,作为提振问题的方法。我们自动通过标签机构建立积极、中立+、中性和负培训样本。在回答建议时,我们用以神经网络模型计算得分来回答候选人。为了评估我们提议的模型的性能,我们对四个数据集进行了大规模评估,从现实世界技术解答网站收集了答案(例如,问Ubuntu、超级用户、Stack Overover-world 用户在实验性数据库中展示了我们最有效的直径用户结果。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
14+阅读 · 2018年4月18日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员