Generative Adversarial Network (GAN) is a well known computationally complex algorithm requiring signficiant computational resources in software implementations including large amount of data to be trained. This makes its implementation in edge devices with conventional microprocessor hardware a slow and difficult task. In this paper, we propose to accelerate the computationally intensive GAN using memristive neural networks in analog domain. We present a fully analog hardware design of Deep Convolutional GAN (DCGAN) based on CMOS-memristive convolutional and deconvolutional networks simulated using 180nm CMOS technology.
翻译:生成自动网络(GAN)是一种众所周知的计算复杂算法,在软件实施过程中需要信号化的计算资源,包括需要培训的大量数据,这使得在使用常规微处理器硬件的边缘装置中实施该算法是一项缓慢和困难的任务。在本文中,我们提议利用模拟域的中小型神经网络加速计算密集的GAN。我们展示了以CMOS-乳胶式共振和分导网络为基础、以180nm CMOS技术模拟的CMOS-模拟反导和分导网络的深共振GAN(DCGAN)完全模拟的硬件设计。