As Non-Fungible Tokens (NFTs) continue to grow in popularity, NFT users have become targets of phishing attacks by cybercriminals, called NFT drainers. Over the last year, \$100 million worth of NFTs were stolen by drainers, and their presence remains as a serious threat to the NFT trading space. Since NFTs are different from cryptocurrencies, existing work on detecting Ethereum phishers is unsuitable to detect NFT drainers. Moreover, no work has yet comprehensively investigated the behaviors of drainers in the NFT ecosystem. In this paper, we present the first study on trading behavior of NFT drainers and present the first dedicated NFT drainer detection system. We extract data of 83M NFT transactions from the Ethereum blockchain and collect 742 drainer accounts from five sources. We find drainers have significantly different transaction context and social context compared to regular users. With the insights gained from our analysis, we design an automatic drainer detection system, DRAINCLoG, that uses graph neural networks to capture the complex relationships in the NFT ecosystem. Our model effectively captures NFT transaction contexts and social contexts using an NFT-User graph and a User graph, respectively. Evaluated on real-world NFT transaction data, we prove the model's effectiveness and robustness.


翻译:由于非易变托肯斯(NFTs)继续受到欢迎,NFT用户已成为网络罪犯(称为NFT排水者)的钓鱼袭击的目标。去年,价值1亿美元的NFT公司被排水者盗窃,其存在仍然是对NFT交易空间的严重威胁。由于NFT公司不同于密码,现有发现Etheem私隐者的工作不适合探测NFT排水者。此外,目前尚未开展全面调查NFT生态系统中排水者行为的工作。在本文件中,我们介绍了关于NFT排水者交易行为的第一份研究报告,并介绍了首个专用NFT排水者探测系统。我们从Etheum连锁公司提取了83M NFT交易数据,从五个来源收集了742个排水者账户。我们发现排水者的交易背景和社会背景与经常用户大不相同。根据我们的分析,我们设计了一个自动排水者探测系统(DRAINCLOG),该系统使用纸质网络在NFTFT系统、NFFT系统、NFT数据库和NFT系统交易背景下的复杂关系。我们有效地收集了NFTFTFS-FS-FS-FS-FS-FS-FS-FS-FS-FS-FS-S-S-S-S-FDFDFS-S-S-S-S-S-S-S-S-S-S-S-S-S-S-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-IF-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
49+阅读 · 2022年10月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
22+阅读 · 2022年3月31日
Arxiv
28+阅读 · 2021年9月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员