In Federated Learning (FL), clients train a model locally and share it with a central aggregator to build a global model. Impermissibility to access client's data and collaborative training makes FL appealing for applications with data-privacy concerns such as medical imaging. However, these FL characteristics pose unprecedented challenges for debugging. When a global model's performance deteriorates, finding the round and the clients responsible is a major pain point. Developers resort to trial-and-error debugging with subsets of clients, hoping to increase the accuracy or let future FL rounds retune the model, which are time-consuming and costly. We design a systematic fault localization framework, FedDebug, that advances the FL debugging on two novel fronts. First, FedDebug enables interactive debugging of realtime collaborative training in FL by leveraging record and replay techniques to construct a simulation that mirrors live FL. FedDebug's {\em breakpoint} can help inspect an FL state (round, client, and global model) and seamlessly move between rounds and clients' models, enabling a fine-grained step-by-step inspection. Second, FedDebug automatically identifies the client responsible for lowering global model's performance without any testing data and labels--both are essential for existing debugging techniques. FedDebug's strengths come from adapting differential testing in conjunction with neurons activations to determine the precise client deviating from normal behavior. FedDebug achieves 100\% to find a single client and 90.3\% accuracy to find multiple faulty clients. FedDebug's interactive debugging incurs 1.2\% overhead during training, while it localizes a faulty client in only 2.1\% of a round's training time. With FedDebug, we bring effective debugging practices to federated learning, improving the quality and productivity of FL application developers.


翻译:在联邦学习联盟(FL)中,客户在本地培训一个模型,并将模型与中央调试器分享,以构建一个全球模型。允许访问客户的数据和合作培训的不便性能使 FL 吸引数据隐私问题的应用。然而,这些FL 特性对调试提出了前所未有的挑战。当全球模型的性能恶化时,发现回合和客户责任者是一个重大痛苦点。开发者与客户子群进行试试和机变调,希望提高准确性,或让未来的FL回合重调这个耗时且成本高昂的模型。我们设计了一个系统错误的本地化框架,即FedDebug,在两个新颖的战线上推进FL调试。首先,FedDebug能够利用记录和重播技术来模拟FL的实时合作培训,在当前的FL中找到一个有效的、客户群变现的、客户群变现的、全球变现的变现的变现,在第二回合和客户群和客户群间移动的变现过程中,可以确定一个精确的客户变现的变现性变现,同时进行货币测试。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年3月2日
Arxiv
20+阅读 · 2022年10月10日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员