State of the art mapping algorithms can produce high-quality maps. However, they are still vulnerable to clutter and outliers which can affect map quality and in consequence hinder the performance of a robot, and further map processing for semantic understanding of the environment. This paper presents ROSE, a method for building-level structure detection in robotic maps. ROSE exploits the fact that indoor environments usually contain walls and straight-line elements along a limited set of orientations. Therefore metric maps often have a set of dominant directions. ROSE extracts these directions and uses this information to segment the map into structure and clutter through filtering the map in the frequency domain (an approach substantially underutilised in the mapping applications). Removing the clutter in this way makes wall detection (e.g. using the Hough transform) more robust. Our experiments demonstrate that (1) the application of ROSE for decluttering can substantially improve structural feature retrieval (e.g., walls) in cluttered environments, (2) ROSE can successfully distinguish between clutter and structure in the map even with substantial amount of noise and (3) ROSE can numerically assess the amount of structure in the map.


翻译:艺术绘图算法的状态可以产生高质量的地图,但是,它们仍然容易受到可影响地图质量并因此妨碍机器人性能的乱七八糟和断层线的干扰,从而妨碍机器人的性能,并妨碍进一步进行地图处理,以了解环境。本文介绍了机器人地图中建筑结构探测的一种方法ROSE。ROSE利用了室内环境通常包含墙壁和一系列有限方向的直线元素这一事实。因此,光学地图往往有一套主要方向。ROSE提取了这些方向,并利用这些信息将地图分割成结构,并通过在频率域中过滤地图(在绘图应用中大大低估了这一方法)来将地图的乱七和结构混合起来(在绘图应用中这种方法时,这种乱七八八糟的做法在很大程度上被低估了),使墙探测(例如使用哈夫变形)更加有力。我们的实验表明:(1) 将ROSEE用于消沉可以大大改善在封闭环境中的结构特征检索(例如墙),(2)ROSEE可以成功地区分地图中布片状和结构之间的分块和结构,即使有相当的噪音,(3) ROSEEE可以从数字上评估地图的结构。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
已删除
将门创投
3+阅读 · 2017年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Structure Aware SLAM using Quadrics and Planes
Arxiv
4+阅读 · 2018年8月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
已删除
将门创投
3+阅读 · 2017年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员