Instruments can be used to identify causal effects in the presence of unobserved confounding, under the famous relevance and exclusion assumptions. As exclusion is difficult to justify and to some degree untestable, it often invites criticism in applications. Hoping to alleviate this problem, we propose a novel identification approach, which relaxes traditional IV exclusion to exclusion conditional on some unobserved common confounders. We assume there exist some relevant proxies for the unobserved common confounders. Unlike typical proxies, our proxies can have a direct effect on the endogenous regressor and the outcome. We provide point identification results with a linearly separable outcome model in the disturbance, and alternatively with strict monotonicity in the first stage. Using this novel method with NLS97 data, we demonstrate the insignificant role of ability bias compared to general selection bias in the economic returns to education problem. Beyond economics, the approach is just as relevant in health treatment evaluation with an unobserved underlying health status, or a psychological study where character traits are unobserved common confounders.
翻译:根据著名的关联性和排斥性假设,可以使用一些工具来确定在未观察到的混乱情况下的因果关系。由于排斥很难找到理由,而且在某种程度上是无法检验的,因此往往会招致应用方面的批评。为了缓解这一问题,我们提议一种新的识别方法,即放宽传统的四类排斥,以某些未观察到的共同混淆者为条件,将排除作为条件。我们假定,对于未观察到的共同混淆者,存在着一些相关的代理人。与典型的代理人不同,我们的代理人可以直接影响到内生递后者和结果。我们提供点识别结果,在扰动中采用线性分解的结果模型,而在第一阶段则采用严格的单一性。使用NLS97数据的新方法,我们显示了能力偏差与经济回报对教育问题的一般选择偏差相比微不足道的作用。除了经济学外,这种方法在健康治疗评价中与未观察到的基本健康状况有关,或者在性质特征未被发现的共同连接者进行心理研究时,同样具有相关性。