This paper introduces a local-to-unity/small sigma process for a stationary time series with strong persistence and non-negligible long run risk. This process represents the stationary long run component in an unobserved short- and long-run components model involving different time scales. More specifically, the short run component evolves in the calendar time and the long run component evolves in an ultra long time scale. We develop the methods of estimation and long run prediction for the univariate and multivariate Structural VAR (SVAR) models with unobserved components and reveal the impossibility to consistently estimate some of the long run parameters. The approach is illustrated by a Monte-Carlo study and an application to macroeconomic data.
翻译:本文介绍一个固定时间序列的局部至统一/小型西格玛进程,该过程具有很强的持久性和不可忽略的长期风险,是一个未观察到的、涉及不同时间尺度的短期和长期元件模型中的固定长期组成部分,更具体地说,短期元件在日历时间中演变,长期元件在超长的时间尺度中演变。我们为单体和多变量结构VAR(SVAR)模型开发了未观测元件的估算和长期预测方法,并揭示了无法对一些长期参数进行一致估计,蒙特-卡洛研究和宏观经济数据应用说明了这一方法。