In this paper, we consider incorporating data associated with the sun's north and south polar field strengths to improve solar flare prediction performance using machine learning models. When used to supplement local data from active regions on the photospheric magnetic field of the sun, the polar field data provides global information to the predictor. While such global features have been previously proposed for predicting the next solar cycle's intensity, in this paper we propose using them to help classify individual solar flares. We conduct experiments using HMI data employing four different machine learning algorithms that can exploit polar field information. Additionally, we propose a novel probabilistic mixture of experts model that can simply and effectively incorporate polar field data and provide on-par prediction performance with state-of-the-art solar flare prediction algorithms such as the Recurrent Neural Network (RNN). Our experimental results indicate the usefulness of the polar field data for solar flare prediction, which can improve Heidke Skill Score (HSS2) by as much as 10.1%.
翻译:在本文中,我们考虑利用机器学习模型纳入与太阳北极和南极地强力相关的数据,以提高太阳耀斑预测性能。当用于补充活跃区域关于太阳光球磁场的当地数据时,极地数据向预测者提供全球信息。虽然以前曾提议利用这些全球特征来预测下一个太阳周期的强度,但在本文中,我们提议利用这些特征来帮助对个别太阳耀斑进行分类。我们利用HMI数据进行实验,使用四种不同的机器学习算法来利用极地信息。此外,我们提议采用一种新型的概率混合专家模型,可以简单有效地纳入极地数据,并用最新的太阳耀斑预测算法提供预测性能,如经常性神经网络(NNN)。我们的实验结果显示极地数据对太阳耀斑预测的有用性,这可以使海德克天分数(HSS2)提高10.1%。