Continual learning (CL) learns a sequence of tasks incrementally. There are two popular CL settings, class incremental learning (CIL) and task incremental learning (TIL). A major challenge of CL is catastrophic forgetting (CF). While a number of techniques are already available to effectively overcome CF for TIL, CIL remains to be highly challenging. So far, little theoretical study has been done to provide a principled guidance on how to solve the CIL problem. This paper performs such a study. It first shows that probabilistically, the CIL problem can be decomposed into two sub-problems: Within-task Prediction (WP) and Task-id Prediction (TP). It further proves that TP is correlated with out-of-distribution (OOD) detection, which connects CIL and OOD detection. The key conclusion of this study is that regardless of whether WP and TP or OOD detection are defined explicitly or implicitly by a CIL algorithm, good WP and good TP or OOD detection are necessary and sufficient for good CIL performances. Additionally, TIL is simply WP. Based on the theoretical result, new CIL methods are also designed, which outperform strong baselines in both CIL and TIL settings by a large margin.
翻译:持续学习(CL) 学习一系列渐进式的任务。 有两种流行的 CL 设置, 班级递增( CIL) 和任务递增( TIL) 。 CL 的主要挑战是灾难性的忘记( CF ) 。 虽然已有一些技术可以有效克服 TIL 的 CF( CIL), CIL 仍然具有极大的挑战性。 到目前为止, 很少进行理论研究, 就如何解决 CIL 问题提供原则性指导。 本文进行这样的研究。 它首先表明, 概率性地说, CLIL 问题可以分解成两个子问题: 任务内预测( WP) 和任务性预测( TP ) 。 它进一步证明, TP 与分配外的检测( OOOD) 相关联, 但CIL 和 OOD 探测( OOD ) 仍然十分困难。 这项研究的主要结论是,不管 WP 和 良好的TP 或 OOD 探测( OOD ) 检测是明确或隐含的 必要的, 足以实现 CIL 良好的 CIL 。 此外, TIL 的理论基础基础是 。