Unit group computations are a cryptographic primitive for which one has a fast quantum algorithm, but the required number of qubits is $\tilde O(m^5)$. In this work we propose a modification of the algorithm for which the number of qubits is $\tilde O(m^2)$ in the case of cyclotomic fields. Moreover, under a recent conjecture on the size of the class group of $\mathbb{Q}(\zeta_m + \zeta_m^{-1})$, the quantum algorithms is much simpler because it is a hidden subgroup problem (HSP) algorithm rather than its error estimation counterpart: continuous hidden subgroup problem (CHSP). We also discuss the (minor) speed-up obtained when exploiting Galois automorphisms thanks to the Buchmann-Pohst algorithm over $\mathcal{O}_K$-lattices.
翻译:单位组计算是一种加密原始, 一个人拥有快速量子算法, 但要求的量子数是 $\ tilde O( m<unk> 5) $。 在这项工作中, 我们提议修改算法, 在环形字段中, qubit 的数量是 $\ tilde O( m<unk> 2) $。 此外, 根据最近对 $\ mathbb* (\zeta_ m +\zeta_ m<unk> *-1} 类组规模的推测, 量子算法要简单得多, 因为它是一个隐藏的子组( HSP) 算法, 而不是它的错误估计对应方: 连续隐藏子组问题( CHSP ) 。 我们还讨论了利用 Buchmann- Pohst 算法在 $\ mathcal{ O<unk> K$- Lattices 上取得的( minor) ) 速度。</s>