We propose a flexible approach for the detection of features in images with ultra low signal-to-noise ratio using cubical persistent homology. Our main application is in the detection of atomic columns and other features in transmission electron microscopy (TEM) images. Cubical persistent homology is used to identify local minima in subregions in the frames of nanoparticle videos, which are hypothesized to correspond to relevant atomic features. We compare the performance of our algorithm to other employed methods for the detection of columns and their intensity. Additionally, Monte Carlo goodness-of-fit testing using real-valued summaries of persistence diagrams$\unicode{8212}$including the novel ALPS statistic$\unicode{8212}$derived from smoothed images (generated from pixels residing in the vacuum region of an image) is developed and employed to identify whether or not the proposed atomic features generated by our algorithm are due to noise. Using these summaries derived from the generated persistence diagrams, one can produce univariate time series for the nanoparticle videos, thus providing a means for assessing fluxional behavior. A guarantee on the false discovery rate for multiple Monte Carlo testing of identical hypotheses is also established.
翻译:我们建议采用一种灵活的方法,用单方持久性同族体探测信号到噪音比率极低的图像特征。我们的主要应用是探测原子柱和传输电子显微镜图像的其他特征。在纳米粒子视频框架中,使用阴性持久性同族体来识别各分区的当地微型图像,这些图像假定与相关原子特征相对应。我们将我们的算法的性能与用于探测柱子及其强度的其他方法进行比较。此外,利用真实估价的耐久性图解图$\ unicode{8212}美元,包括新型的ALPS统计$\uncode{8212}美元,开发并使用光滑动图像产生的图像(来自位于一个图像真空区域的像素生成的像素),用以确定我们算法产生的拟议原子特征是否与噪音有关。使用从生成的耐久性图中得出的这些摘要,可以产生纳米粒子视频的单流时间序列,从而提供评估通性行为的手段。为多种相同的假设测试设定的假发现率的保证也是对多种卡路里模拟试验确定的假发现率的保证。