We propose a data-driven mean-curvature solver for the level-set method. This work is the natural extension to $\mathbb{R}^3$ of our two-dimensional strategy in [arXiv:2201.12342][1] and the hybrid inference system of [DOI: 10.1016/j.jcp.2022.111291][2]. However, in contrast to [1,2], which built resolution-dependent neural-network dictionaries, here we develop a pair of models in $\mathbb{R}^3$, regardless of the mesh size. Our feedforward networks ingest transformed level-set, gradient, and curvature data to fix numerical mean-curvature approximations selectively for interface nodes. To reduce the problem's complexity, we have used the Gaussian curvature to classify stencils and fit our models separately to non-saddle and saddle patterns. Non-saddle stencils are easier to handle because they exhibit a curvature error distribution characterized by monotonicity and symmetry. While the latter has allowed us to train only on half the mean-curvature spectrum, the former has helped us blend the data-driven and the baseline estimations seamlessly near flat regions. On the other hand, the saddle-pattern error structure is less clear; thus, we have exploited no latent information beyond what is known. In this regard, we have trained our models on not only spherical but also sinusoidal and hyperbolic paraboloidal patches. Our approach to building their data sets is systematic but gleans samples randomly while ensuring well-balancedness. We have also resorted to standardization and dimensionality reduction as a preprocessing step and integrated regularization to minimize outliers. In addition, we leverage curvature rotation/reflection invariance to improve precision at inference time. Several experiments confirm that our proposed system can yield more accurate mean-curvature estimations than modern particle-based interface reconstruction and level-set schemes around under-resolved regions.


翻译:我们为级别定置方法建议了一个数据驱动的平均值-曲线求解解解。 这项工作是自然延伸至[ arXiv: 2201. 12342][ 1] 中我们二维战略的$\ mathbb{R ⁇ 3$, 以及[ DOI: 10. 1016/j. jcp. 20222.11191][ 2] 的混合推断系统。 然而, 与[ 1 2 相比, 我们建立了分辨率依赖神经网络的字典, 我们在这里开发了一套模型, $\ mathb{ R ⁇ 3$, 不论直径偏差大小如何。 我们的向前网络, 最向前的向前的向前进网络, 最向前的向前的向前进网络, 向前的向后, 向后, 向前的向下方的向下方, 向前的向下方, 向下方的向下方, 向下方的向下方, 向下方的向下方的向下方, 向下方的向下方, 向下方的向下方的向下方, 向后方的向后方的向后方, 向后方的向后方, 向后方的向后方的向后方, 向后方, 向后方的向后方的向后方, 向后方, 向后方的向后方, 向后方的向后方的向后方, 向后方的向后方, 向后方, 向下方的向后方的向后方的向后方, 向后方的向后方的向下方的向后方的向下方, 向后方, 向后方, 向后方, 向后方, 向后方, 向下方, 向下方, 向下方, 向下方, 向下方, 向下方, 向后方, 向后方的向下方, 向后方的向下方的向下方的向下方的向下方的向下方的向下方的向下方的向下方的向下方的向下方, 向下方的向下方,

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
45+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月6日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
0+阅读 · 2022年9月30日
Arxiv
65+阅读 · 2021年6月18日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员