Human behavior is the potential and expressive capacity (mental, physical, and social) of human individuals or groups to respond to internal and external stimuli. We explore assortative matching as a typical human behavior in virtual networked communities. We propose a modeling approach based on MAS(Multi-Agent System) and policy-based reinforcement learning to simulate human behavior through various environmental parameter settings and agent action strategies. In our experiment, reinforcement learning serves specific agents who learn from the environment status and competitor behaviors, then optimize strategy to achieve better results. This work simulates both the individual and group level, showing some possible paths for forming relative competitive advantages. This modeling approach can help further analyze the evolutionary dynamics of human behavior, communities, and organizations on various socioeconomic topics.
翻译:人类行为是人类个人或群体应对内部和外部刺激的潜在和表达能力(精神、物理和社会能力)。我们探索在虚拟网络社区中作为典型的人类行为进行各种匹配。我们提出基于MAS(多边-主体系统)和政策强化学习的模型方法,以通过各种环境参数设置和代理行动战略模拟人类行为。在我们的实验中,强化学习服务于从环境状况和竞争行为中学习的特定行为主体,然后优化战略以取得更好的结果。这项工作模拟个人和群体层面,展示形成相对竞争优势的可能途径。这种模型方法有助于进一步分析人类行为、社区和组织在各种社会经济专题上的进化动态。