This paper studies the allocation of indivisible items to agents, when each agent's preferences are expressed by means of a directed acyclic graph. The vertices of each preference graph represent the subset of items approved of by the respective agent. An arc $(a,b)$ in such a graph means that the respective agent prefers item $a$ over item $b$. We introduce a new measure of dissatisfaction of an agent by counting the number of non-assigned items which are approved of by the agent and for which no more preferred item is allocated to the agent. Considering two problem variants, we seek an allocation of the items to the agents in a way that minimizes (i) the total dissatisfaction over all agents or (ii) the maximum dissatisfaction among the agents. For both optimization problems we study the status of computational complexity and obtain NP-hardness results as well as polynomial algorithms with respect to natural underlying graph structures, such as stars, trees, paths, and matchings. We also analyze the parameterized complexity of the two problems with respect to various parameters related to the number of agents, the dissatisfaction threshold, the vertex degrees of the preference graphs, and the treewidth.
翻译:本文研究向代理人分配不可分割的物品的问题,当每个代理人的偏好是通过一个定向的圆形图表示出来时,每个代理人的偏好是分给代理人的。每张偏好图的顶点代表各代理人核准的物品的子组。在这样的图表中,一个arc (a) 美元(b) 美元意味着各代理人的偏好是a美元而不是a美元。我们通过计算代理人批准的、没有给代理人分配任何更可取物品的未指定物品的数目,对代理人的不满意度采取一种新的衡量尺度。考虑到两个问题变式,我们寻求将物品分给代理人的方式是尽量减少(一) 对所有代理人的不满或(二) 代理人之间的最大不满。对于这两个优化问题,我们研究计算复杂性的状况,并获得NP-硬度结果以及自然基本图结构(如恒星、树木、路径和比对等)的多元算法。我们还分析了与代理人的数目、不满临界阈值、图的顶等各种参数有关的两个问题的参数的参数的参数的参数的复杂性。