Budget pacing is a popular service that has been offered by major internet advertising platforms since their inception. Budget pacing systems seek to optimize advertiser returns subject to budget constraints by smoothly spending advertiser budgets. In the past few years, autobidding products that provide real-time bidding as a service to advertisers have seen a prominent rise in adoption. A popular autobidding strategy is value maximization subject to return-on-spend (ROS) constraints. For historical/business reasons, the systems that govern these two services, namely budget pacing and ROS pacing, are not always a unified and coordinated entity that optimizes a global objective subject to both constraints. The purpose of this work is to theoretically and empirically compare algorithms with different degrees of coordination between these two pacing systems. In particular, we compare (a) a fully-decoupled sequential algorithm that first constructs the advertiser's ROS-pacing bid and then lowers that bid for budget pacing; (b) a minimally-coupled min-pacing algorithm that runs these two services independently, obtains the bid multipliers from both of them and applies the minimum of the two multipliers as the effective multiplier; and (c) a fully-coupled dual-based algorithm that optimally combines the dual variables from both the systems. Our main contribution is to theoretically analyze the min-pacing algorithm and show that it attains similar guarantees to the fully-coupled canonical dual-based algorithm. On the other hand, we show that the sequential algorithm, even though appealing by virtue of being fully decoupled, could badly violate the constraints. We validate our theoretical findings empirically by showing that the min-pacing algorithm performs almost as well as the canonical dual-based algorithm on a semi-synthetic dataset based on a large online advertising platform's data.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员