Existing malware detectors on safety-critical devices have difficulties in runtime detection due to the performance overhead. In this paper, we introduce PROPEDEUTICA, a framework for efficient and effective real-time malware detection, leveraging the best of conventional machine learning (ML) and deep learning (DL) techniques. In PROPEDEUTICA, all software start execution are considered as benign and monitored by a conventional ML classifier for fast detection. If the software receives a borderline classification from the ML detector (e.g. the software is 50% likely to be benign and 50% likely to be malicious), the software will be transferred to a more accurate, yet performance demanding DL detector. To address spatial-temporal dynamics and software execution heterogeneity, we introduce a novel DL architecture (DEEPMALWARE) for PROPEDEUTICA with multi-stream inputs. We evaluated PROPEDEUTICA with 9,115 malware samples and 1,338 benign software from various categories for the Windows OS. With a borderline interval of [30%-70%], PROPEDEUTICA achieves an accuracy of 94.34% and a false-positive rate of 8.75%, with 41.45% of the samples moved for DEEPMALWARE analysis. Even using only CPU, PROPEDEUTICA can detect malware within less than 0.1 seconds.


翻译:安全关键设备上现有的恶意检测器由于性能管理而难以在运行时发现。 在本文中,我们引入了PROPEDEUTICA,这是一个高效和有效实时检测恶意检测框架,利用了常规机器学习(ML)和深层次学习(DL)技术的最佳手段。在PROPEDEUTICA中,所有软件的启动实施都被视为良性,并由常规 ML 分类器监测快速检测。如果软件从 ML 检测器(例如软件可能为50%良性,也可能为50%)得到边缘分类,软件将转移到更准确、但要求DL 检测器。为了解决空间-时间动态和软件执行差异性,我们引入了带有多流投入的PROPEDEUTICA新DL(DLWARE)架构。我们用9115个恶意样本和1 338个来自不同类别的良性软件对PESOOS进行了评估。在[30-70 %的边界间隔下,PRODEICA将转移到一个94.344%的磁标中,而仅使用PIAMA MA MA 的磁性比例分析不到875。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
【推荐】基于TVM工具链的深度学习编译器 NNVM compiler发布
机器学习研究会
5+阅读 · 2017年10月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
6+阅读 · 2018年2月6日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
【推荐】基于TVM工具链的深度学习编译器 NNVM compiler发布
机器学习研究会
5+阅读 · 2017年10月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员