With the recent success of deep learning algorithms, many researchers have focused on generative models for human motion animation. However, the research community lacks a platform for training and benchmarking various algorithms, and the animation industry needs a toolkit for implementing advanced motion synthesizing techniques. To facilitate the study of deep motion synthesis methods for skeleton-based human animation and their potential applications in practical animation making, we introduce \genmotion: a library that provides unified pipelines for data loading, model training, and animation sampling with various deep learning algorithms. Besides, by combining Python coding in the animation software \genmotion\ can assist animators in creating real-time 3D character animation. Source code is available at https://github.com/realvcla/GenMotion/.
翻译:随着最近深层次学习算法的成功,许多研究人员侧重于人类运动动画的基因模型。然而,研究界缺乏培训和确定各种算法基准的平台,动画产业需要一个实施高级运动合成技术的工具包。为了便利研究以骨架为基础的人类动画及其在实际动画制作中潜在应用的深层次运动合成方法,我们引入了“基因”:一个图书馆,为数据加载、模型培训和动画取样提供统一的管道,与各种深层次学习算法相结合。此外,将Python编码结合到动画软件\genmotion\中可以帮助动画家创建实时的3D字符动画。源代码可以在 https://github.com/realvcla/GenMotion/上查阅。