Although the sphere decoder (SD) is a powerful detector for multiple-input multiple-output (MIMO) systems, it has become computationally prohibitive in massive MIMO systems, where a large number of antennas are employed. To overcome this challenge, we propose fast deep learning (DL)-aided SD (FDL-SD) and fast DL-aided $K$-best SD (KSD, FDL-KSD) algorithms. Therein, the major application of DL is to generate a highly reliable initial candidate to accelerate the search in SD and KSD in conjunction with candidate/layer ordering and early rejection. Compared to existing DL-aided SD schemes, our proposed schemes are more advantageous in both offline training and online application phases. Specifically, unlike existing DL-aided SD schemes, they do not require performing the conventional SD in the training phase. For a $24 \times 24$ MIMO system with QPSK, the proposed FDL-SD achieves a complexity reduction of more than $90\%$ without any performance loss compared to conventional SD schemes. For a $32 \times 32$ MIMO system with QPSK, the proposed FDL-KSD only requires $K = 32$ to attain the performance of the conventional KSD with $K=256$, where $K$ is the number of survival paths in KSD. This implies a dramatic improvement in the performance--complexity tradeoff of the proposed FDL-KSD scheme.
翻译:虽然域解码器(SD)是多个投入多输出系统(MIMO)的强大探测器,但在大型MIMO系统中,它已经变得在计算上令人无法接受,因为使用了大量天线,因此在大型MIMO系统中,它已经变得在计算上令人望而却步。为了克服这一挑战,我们建议快速深深思熟虑(DL)辅助SD(DFL-SD)和快速DL(DL)辅助最佳SD(KSD,FDL-KSD)算法。DL的主要应用是生成一个非常可靠的初始候选人,以加快SD和KSD(MI)系统的搜索速度,与候选人/机组订购和早期拒绝相结合,加速SD和KSD的搜索速度。与现有的DL援助SD计划相比,我们提议的计划在离线培训和在线应用阶段都更有利。具体地说,与现有的DLSD(D)帮助S(D)系统不同,它们不需要在培训阶段执行常规SD(K)24美元MIMFS(SD美元)系统,拟议的FL-SD(SD)比传统的SD(K)计划需要32K-MDM(K)达到32K)的绩效制度。