Large language models (LLMs) are increasingly vulnerable to multi-turn jailbreak attacks, where adversaries iteratively elicit harmful behaviors that bypass single-turn safety filters. Existing defenses predominantly rely on passive rejection, which either fails against adaptive attackers or overly restricts benign users. We propose a honeypot-based proactive guardrail system that transforms risk avoidance into risk utilization. Our framework fine-tunes a bait model to generate ambiguous, non-actionable but semantically relevant responses, which serve as lures to probe user intent. Combined with the protected LLM's safe reply, the system inserts proactive bait questions that gradually expose malicious intent through multi-turn interactions. We further introduce the Honeypot Utility Score (HUS), measuring both the attractiveness and feasibility of bait responses, and use a Defense Efficacy Rate (DER) for balancing safety and usability. Initial experiment on MHJ Datasets with recent attack method across GPT-4o show that our system significantly disrupts jailbreak success while preserving benign user experience.


翻译:大型语言模型(LLMs)日益面临多轮越狱攻击的威胁,攻击者通过迭代交互诱使模型产生有害行为,从而绕过单轮安全过滤器。现有防御机制主要依赖被动拒绝策略,这要么难以应对自适应攻击者,要么过度限制了良性用户的使用。我们提出了一种基于蜜罐的主动式护栏系统,将风险规避转化为风险利用。该框架通过微调一个诱饵模型,使其生成语义相关但模棱两可、不可操作的响应,以此作为探测用户意图的诱饵。结合受保护大型语言模型的安全回复,系统会插入主动式诱饵问题,通过多轮交互逐步暴露恶意意图。我们进一步提出了蜜罐效用分数(HUS),用于衡量诱饵响应的吸引力和可行性,并采用防御效能率(DER)来平衡安全性与可用性。在MHJ数据集上使用最新攻击方法对GPT-4o进行的初步实验表明,我们的系统能显著降低越狱成功率,同时保持良性用户体验。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
24+阅读 · 2024年2月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员