We prove existence of global minima in the loss landscape for the approximation of continuous target functions using shallow feedforward artificial neural networks with ReLU activation. This property is one of the fundamental artifacts separating ReLU from other commonly used activation functions. We propose a kind of closure of the search space so that in the extended space minimizers exist. In a second step, we show under mild assumptions that the newly added functions in the extension perform worse than appropriate representable ReLU networks. This then implies that the optimal response in the extended target space is indeed the response of a ReLU network.
翻译:我们证明在损失地貌中存在着全球微型现象,以利用RELU激活的浅质饲料向前人工神经网络来接近连续目标功能。这一属性是将RELU与其他常用激活功能分离的基本文物之一。我们建议关闭搜索空间,以便在扩展的空间最小化器中存在。在第二步,我们以温和的假设显示,在扩展中新增加的功能的运行状况比可适当代表的RELU网络差。这意味着在扩展的目标空间中的最佳反应确实是雷卢尔网络的反应。</s>