Searching for bindings of geometric parameters in task and motion planning (TAMP) is a finite-horizon stochastic planning problem with high-dimensional decision spaces. A robot manipulator can only move in a subspace of its whole range that is subjected to many geometric constraints. A TAMP solver usually takes many explorations before finding a feasible binding set for each task. It is favorable to learn those constraints once and then transfer them over different tasks within the same workspace. We address this problem by representing constraint knowledge with transferable primitives and using Bayesian optimization (BO) based on these primitives to guide binding search in further tasks. Via semantic and geometric backtracking in TAMP, we construct constraint primitives to encode the geometric constraints respectively in a reusable form. Then we devise a BO approach to efficiently utilize the accumulated constraints for guiding node expansion of an MCTS-based binding planner. We further compose a transfer mechanism to enable free knowledge flow between TAMP tasks. Results indicate that our approach reduces the expensive exploration calls in binding search by 43.60to 71.69 when compared to the baseline unguided planner.
翻译:在任务和运动规划(TAMP)中,搜索几何参数的绑定性是具有高维决定空间的有限正方位随机规划问题。 机器人操纵器只能在其整个范围的子空间内移动, 受到许多几何限制。 TAMP 求解器通常要进行多次探索, 才能为每项任务找到一套可行的约束性规定。 最好一次性了解这些制约, 然后将它们转移到同一个工作空间内的不同任务上。 我们解决这个问题的方法是代表可转让原始技术的制约知识, 并使用巴耶西亚优化(BO) 来引导这些原始技术的约束性搜索。 在 TAMP 中, 我们用常识和几何反向跟踪来构建原始技术, 以可重复的形式分别对几何限制进行编码。 然后我们设计一种BO 方法, 有效地利用累积的制约来引导以MCTS 为基础的约束性规划师的节点扩展。 我们进一步配置一个传输机制, 以便能够在TAMP 任务之间自由交流。 结果显示, 我们的方法将约束性搜索中昂贵的勘探呼吁减少4360至71.69, 与基线非制导计划相比, 。