Recently, with the application of deep learning in the remote sensing image (RSI) field, the classification accuracy of the RSI has been dramatically improved compared with traditional technology. However, even the state-of-the-art object recognition convolutional neural networks are fooled by the universal adversarial perturbation (UAP). The research on UAP is mostly limited to ordinary images, and RSIs have not been studied. To explore the basic characteristics of UAPs of RSIs, this paper proposes a novel method combining an encoder-decoder network with an attention mechanism to generate the UAP of RSIs. Firstly, the former is used to generate the UAP, which can learn the distribution of perturbations better, and then the latter is used to find the sensitive regions concerned by the RSI classification model. Finally, the generated regions are used to fine-tune the perturbation making the model misclassified with fewer perturbations. The experimental results show that the UAP can make the classification model misclassify, and the attack success rate of our proposed method on the RSI data set is as high as 97.09%.


翻译:最近,随着遥感图像领域深层学习的应用,RSI的分类准确性与传统技术相比大大提高了,然而,即使是最先进的物体识别神经神经网络也被全球对抗性扰动(UAP)所愚弄。关于UAP的研究大多限于普通图像,而RSI尚未研究。为了探索登记册系统综合评估方案的基本特征,本文件提出了一种新颖的方法,将编码器-解码器网络与关注生成RSI统一评估方案的机制结合起来。首先,前者用于生成UAP,可以更好地了解扰动分布,然后后者用于查找RSI分类模型所涉敏感区域。最后,产生的区域被用来微调使模型分类错误的扰动,减少扰动。实验结果表明,UAP可以使分类模型分类错误化,而我们在RSI数据集的拟议方法攻击成功率高达97.09 %。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
97+阅读 · 2020年5月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
97+阅读 · 2020年5月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员