Recent years have witnessed a swelling rise of hateful and abusive content over online social networks. While detection and moderation of hate speech have been the early go-to countermeasures, the solution requires a deeper exploration of the dynamics of hate generation and propagation. We analyze more than 32 million posts from over 6.8 million users across three popular online social networks to investigate the interrelations between hateful behavior, information dissemination, and polarised organization mediated by echo chambers. We find that hatemongers play a more crucial role in governing the spread of information compared to singled-out hateful content. This observation holds for both the growth of information cascades as well as the conglomeration of hateful actors. Dissection of the core-wise distribution of these networks points towards the fact that hateful users acquire a more well-connected position in the social network and often flock together to build up information cascades. We observe that this cohesion is far from mere organized behavior; instead, in these networks, hatemongers dominate the echo chambers -- groups of users actively align themselves to specific ideological positions. The observed dominance of hateful users to inflate information cascades is primarily via user interactions amplified within these echo chambers. We conclude our study with a cautionary note that popularity-based recommendation of content is susceptible to be exploited by hatemongers given their potential to escalate content popularity via echo-chambered interactions.


翻译:近些年来,网上社交网络上仇恨和滥用内容的上升呈上升趋势。虽然对仇恨言论的发现和调控一直是早期的对策,但解决方案要求更深入地探索仇恨产生和传播的动态。我们分析三个广受欢迎的在线社交网络上超过680万用户的3 200万个文章,以调查仇恨行为、信息传播和由回声室调解的组织两极分化之间的相互关系。我们发现,与单一的仇恨内容相比,仇恨分子在管理信息传播方面发挥着更为关键的作用。观察到的信息级联的增长以及仇恨行为者的聚集都存在。这些网络的核心分布显示,仇恨用户在社交网络中获得了更紧密的联系地位,并常常聚集在一起建立信息级联。我们发现,这种凝聚力远不是单纯有组织的行为;相反,在这些网络中,仇恨分子控制着回声室 -- -- 用户群体积极与特定的意识形态立场接轨。观察到的仇恨用户对晚化信息级联的主导地位主要是通过用户互动方式传播。这些网络的核心分布显示,通过用户互动在社交网络中获得了更紧密的联系,我们的结论是,通过这些回声室内部的回声频度研究会放大了我们的结论。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员