The segment number of a planar graph $G$ is the smallest number of line segments needed for a planar straight-line drawing of $G$. Dujmovi\'c, Eppstein, Suderman, and Wood [CGTA'07] introduced this measure for the visual complexity of graphs. There are optimal algorithms for trees and worst-case optimal algorithms for outerplanar graphs, 2-trees, and planar 3-trees. It is known that every cubic triconnected planar $n$-vertex graph (except $K_4$) has segment number $n/2+3$, which is the only known universal lower bound for a meaningful class of planar graphs. We show that every triconnected planar 4-regular graph can be drawn using at most $n+3$ segments. This bound is tight up to an additive constant, improves a previous upper bound of $7n/4+2$ implied by a more general result of Dujmovi\'c et al., and supplements the result for cubic graphs. We also give a simple optimal algorithm for cactus graphs, generalizing the above-mentioned result for trees. We prove the first linear universal lower bounds for outerpaths, maximal outerplanar graphs, 2-trees, and planar 3-trees. This shows that the existing algorithms for these graph classes are constant-factor approximations. For maximal outerpaths, our bound is best possible and can be generalized to circular arcs.
翻译:平面图 $G$ 是平面直线绘制$G$所需的最小线段数 。 Dujmovi\\'c、 Eppstein、 Suderman 和 Wood [CGTA'07] 引入了此图形复杂性的度量 。 树有最佳算法, 外平面图、 2- Tree 和 Planar 3 树有最差情况的最佳算法。 已知每立立方平面图( K_ 4美元除外) 的分数为 $/2+3 美元 。 平面图中唯一已知的通用平面图为普通的平面图 。 我们显示, 每一个连接的平面图 4- 常规图可以使用最多 $+3 。 边框与添加常数相近, 改善以前的上层范围为 7n/4+2$2 。 Dujmovic\'c et al. 和 补充结果 立面图。 我们还给出了一个简单的平面平面平面平面平面图的简单最优的平面算, 我们的平面图显示的直径图, 3 直径直径直径直图显示, 3 直径图显示的直径图。