While deep learning (DL) architectures like convolutional neural networks (CNNs) have enabled effective solutions in image denoising, in general their implementations overly rely on training data, lack interpretability, and require tuning of a large parameter set. In this paper, we combine classical graph signal filtering with deep feature learning into a competitive hybrid design -- one that utilizes interpretable analytical low-pass graph filters and employs 80% fewer network parameters than state-of-the-art DL denoising scheme DnCNN. Specifically, to construct a suitable similarity graph for graph spectral filtering, we first adopt a CNN to learn feature representations per pixel, and then compute feature distances to establish edge weights. Given a constructed graph, we next formulate a convex optimization problem for denoising using a graph total variation (GTV) prior. Via a $l_1$ graph Laplacian reformulation, we interpret its solution in an iterative procedure as a graph low-pass filter and derive its frequency response. For fast filter implementation, we realize this response using a Lanczos approximation. Experimental results show that in the case of statistical mistmatch, our algorithm outperformed DnCNN by up to 3dB in PSNR.


翻译:深层学习( DL) 结构, 如 convolutional 神经网络( CNN) 等深层学习( DL) 结构, 使得图像解析的有效解决方案变得有效, 一般来说, 它们的实施过度依赖培训数据, 缺乏解释性, 并且需要调整一个大参数集。 在本文中, 我们将古典图形过滤器和深层特征学习结合到竞争性混合设计中 -- -- 一种使用可解释的低通道分析图像过滤器, 并且使用比最先进的 DL 解析计划DnCN 少80%的网络参数。 具体来说, 为了为图形光谱过滤建立一个合适的相似性图, 我们首先使用CNN 来学习每个像素的地貌表达, 然后对地貌距离进行计算, 以建立边距加权。 根据一个构造的图形, 我们接下来将一个矩形优化的优化问题, 用图表总变异( GTVTV) 来解析。 我们用一个迭代程序将其解决方案解释成一个低通道过滤器, 并得出其频率反应。 为了快速过滤实施, 我们用兰氏 PRC 近似的 PAR 来实现这一反应 。 。 在统计中, 格式中将结果结果 显示到 RAR 。

0
下载
关闭预览

相关内容

图像/视频去噪算法资源集锦
专知
18+阅读 · 2019年12月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
8+阅读 · 2018年11月27日
Learning to Importance Sample in Primary Sample Space
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
VIP会员
相关VIP内容
相关资讯
图像/视频去噪算法资源集锦
专知
18+阅读 · 2019年12月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员