Human and animal memory for sequentially presented items is well-documented to be more accurate for those at the beginning and end of a sequence, phenomena known as the primacy and recency effects, respectively. By contrast, artificial neural network (ANN) models are typically designed with a memory that decays monotonically over time. Accordingly, ANNs are expected to show the recency effect but not the primacy effect. Contrary to this theoretical expectation, however, the present study reveals a counterintuitive finding: a recently developed ANN architecture, called structured state-space models, exhibits the primacy effect when trained and evaluated on a synthetic task that mirrors psychological memory experiments. Given that this model was originally designed for recovering neuronal activity patterns observed in biological brains, this result provides a novel perspective on the psychological primacy effect while also posing a non-trivial puzzle for the current theories in machine learning.
翻译:暂无翻译