Collecting annotations from human raters often results in a trade-off between the quantity of labels one wishes to gather and the quality of these labels. As such, it is often only possible to gather a small amount of high-quality labels. In this paper, we study how different training strategies can leverage a small dataset of human-annotated labels and a large but noisy dataset of synthetically generated labels (which exhibit bias against identity groups) for predicting toxicity of online comments. We evaluate the accuracy and fairness properties of these approaches, and trade-offs between the two. While we find that initial training on all of the data and fine-tuning on clean data produces models with the highest AUC, we find that no single strategy performs best across all fairness metrics.


翻译:收集人类保值器的注释往往导致在人们希望收集的标签数量与这些标签的质量之间取舍。 因此,通常只能收集少量高质量标签。 在本文中,我们研究不同的培训战略如何利用少量的人类加注标签数据集和大量但又吵闹的合成标签数据集来预测在线评论的毒性(这些标签对身份群体有偏见)。我们评估了这些做法的准确性和公平性,以及两者之间的取舍。虽然我们发现关于所有数据的初步培训和清洁数据的微调都产生了与最高奥地利联合自卫军的模型,但我们发现没有任何单一战略在所有公平指标中最能发挥作用。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2020年12月28日
专知会员服务
50+阅读 · 2020年12月14日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
近期必读的8篇 AAAI 2020【图神经网络(GNN)】相关论文
专知会员服务
76+阅读 · 2020年1月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
将门创投
5+阅读 · 2019年10月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
14+阅读 · 2020年12月17日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Phrase-Based & Neural Unsupervised Machine Translation
Arxiv
7+阅读 · 2018年5月23日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2020年12月28日
专知会员服务
50+阅读 · 2020年12月14日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
近期必读的8篇 AAAI 2020【图神经网络(GNN)】相关论文
专知会员服务
76+阅读 · 2020年1月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
5+阅读 · 2019年10月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Top
微信扫码咨询专知VIP会员