We study the generalisation properties of majority voting on finite ensembles of classifiers, proving margin-based generalisation bounds via the PAC-Bayes theory. These provide state-of-the-art guarantees on a number of classification tasks. Our central results leverage the Dirichlet posteriors studied recently by Zantedeschi et al. [2021] for training voting classifiers; in contrast to that work our bounds apply to non-randomised votes via the use of margins. Our contributions add perspective to the debate on the "margins theory" proposed by Schapire et al. [1998] for the generalisation of ensemble classifiers.
翻译:我们研究关于有限分类组合的多数表决的概括性特性,通过PAC-Bayes理论证明基于边际的概括性界限,为一些分类任务提供最先进的保障。我们的中心结果利用Zantedeschi等人([2021年])最近研究的Drichlet 后遗星来培训投票分类人员;与此相反,我们的工作界限适用于通过使用边距的非随机化投票。我们的贡献为关于Schapire等人(1998年)提出的“边际理论”的辩论增添了视角。